首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
admin
2017-12-31
84
问题
设A为n阶非零矩阵,且存在自然数k,使得A
k
=O.证明:A不可以对角化.
选项
答案
设矩阵A可以对角化,即存在可逆阵P,使得 [*] 两边k次幂得 [*] 从而有λ
1
=λ
2
=…=λ
n
=0, 于是P
-1
AP=O,进一步得A=O,矛盾,所以矩阵A不可以对角化.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/pJX4777K
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)=2(a1x1,a2x2,a3x3)2+(b1x1,b2x2,b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
设A为m×n实矩阵,E为n阶单位矩阵。已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵。
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α1+α3,Aα3=2α2+3α3求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B;
设向量α=(α1α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT。求:A2;
设3阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(一1,一1,1)T,α2=(1,一2,一1)T。求A的属于特征值3的特征向量;
设λ1,λ2是n阶方阵A的两个不同特征值,x1,x2分别是属λ1,λ2的特征向量。证明:x1+x2不是A的特征向量。
设随机变量X的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数。求(Ⅰ)Y的概率密度FY(y);(Ⅱ)cov(X,Y);
已知A,B为三阶非零方阵,为齐次线性方程组BX=0的3个解向量.且AX=β3有非零解.(1)求a,b的值;(2)求BX=0的通解.
设周期函数f(x)在(一∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5,f(5))处的切线斜率为
设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为__________.
随机试题
图示体系为几何瞬变体系。()
阴道后穹隆穿刺抽出不凝血表明
肺源性心脏病代偿期可出现
A.I型变态反应B.Ⅱ型变态反应C.Ⅲ型变态反应D.Ⅳ型变态反应E.V型变态反应Arthus反应是
患者,男,50岁。结石性胆囊炎,拟行腹腔镜胆囊摘除术。既往有哮喘病史,体力活动后呼吸困难,夜间需抬高头部,无外周水肿。血气分析:pH7.36,PaO260mmHg,PaCO285mmHg,HCO3一36mmol/L。肌松药应首选
A、B公司均为增值税一般纳税人,适用的增值税税率均为17%,A公司和B公司债务重组有关资料如下:A公司销售给B公司一批库存商品,含税价款为2000万元,款项尚未收到。到期时B公司无法按合同规定偿还债务。经双方协商,A公司同意B公司用库存商品和交易性金融资产
我国出境旅游的主要特点有()。
DavidCameronworksat______,andQueenElizabethIIlivesat______.
马克思主义哲学同具体科学的关系是()。
公有制的主体地位主要体现在()。
最新回复
(
0
)