首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下3个命题, ①若数列{un}收敛于A,则其任意子数列{uni}必定收敛于A; ②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A; ③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A. 正确的个数为 (
以下3个命题, ①若数列{un}收敛于A,则其任意子数列{uni}必定收敛于A; ②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A; ③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A. 正确的个数为 (
admin
2015-07-04
93
问题
以下3个命题,
①若数列{u
n
}收敛于A,则其任意子数列{u
ni
}必定收敛于A;
②若单调数列{x
n
}的某一子数列{x
ni
}收敛于A,则该数列必定收敛于A;
③若数列{x
2n
}与{x
2n+1
}都收敛于A,则数列{x
n
}必定收敛于A.
正确的个数为 ( )
选项
A、0
B、1
C、2
D、3
答案
D
解析
对于命题①,由数列收敛的定义可知,若数列{u
n
}收敛于A,则对任意给定的ε>0,存在自然数N,当n>N时,恒有|u
n
一A|<ε.可知当n
i
>N时,恒有|u
ni
一A|<ε.因此数列{u
ni
}也收敛于A,可知命题正确.对于命题②,不妨设数列{x
n
}为单调增加的,即x
1
≤x
2
≤…≤x
n
≤…,其中某一给定子数列{x
ni
}收敛于A,则对任意给定的ε>0,存在自然数N,当n
i
>N时,恒有|x
ni
—A|<ε.由于数列{x
n
}为单调增加的数列,对于任意的n>N,必定存在n
i
≤n≤n
i+1
,有一ε
ni一A≤x
n
一A≤x
ni+1
一A<ε,从而 |x
n
一A|<ε.
可知数列{x
n
}收敛于A.因此命题正确.
对于命题③,因
,由极限的定义可知,对于任意给定的ε>0,必定存在自然数N
1
,N
2
:
当2n>N
1
时,恒有 |x
2n
一A|<ε;
当2n+1>N
2
时,恒有 |x
2n+1
一A|<ε.
取N=max{N
1
,N
2
},则当n>N时,总有|x
n
一A|<ε.因此
.可知命题正确.故答案选择D.
转载请注明原文地址:https://www.kaotiyun.com/show/pEw4777K
0
考研数学一
相关试题推荐
设f’x(x0,y0),f’y(x0,y0)都存在,则().
设f(x)=∫0xecostdt,求∫0πf(x)cosxdx.
e-1
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明:存在ξ∈(a,b)使f’(ξ)/g’(ξ)+∫aξf(t)dt/∫ξbf(t)dt=0
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0,证明:存在ε∈(-1,1),使得f"’(ε)=3.
一个盒子内放有12个大小相同的球,其中有5个红球,4个白球,3个黑球.第一次随机地摸出2个球,观察后不放回,第二次随机地摸出3个球,记Xi表示第i次摸到的红球的数目(i=1,2);Yj表示第j次摸到的白球数,求:两次摸到的红球总数Y的分布;
假设:①函数y=f(x)(0≤x≤+∞)满足条件f(0)=0和0≤f(x)≤ex一1;②平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别相交于点P1和P2;③曲线y=f(x),直线MN与x轴所围成的封闭图形的面积S恒等于线段P1P2的长度。
求Z的概率密度fZ(z).
设α1,α2,α3,…,αm与β1,β2,β3,…βs为两个n维向量组,且r(α1,α2,α3,…,αm)=r(β1,β2,β3,…βs)=r,则()。
设总体X~N(μ,σ2),其中σ2未知,s2=,样本容量n,则参数μ的置信度为1-a的置信区间为().
随机试题
举例说明如何克服在绩效考核中的心理偏差。
哪种心脏病患者妊娠后易得肺水肿
丹参所没有的药理作用是
舌苔花剥,经久不愈,状如"地图"是由于
昼夜尿量至少超过()为多尿。
顾炎武
甲公司为某政府部门实施电子政务平台建设项目,需要采购8台服务器和30台交换机交付给客户使用,这部分成本属于该项目的()。
Inbringingupchildren,everyparentwatcheseagerlythechild’sacquisitionofeachnewskill—thefirstspokenwords,thefirs
Allowmetogiveyoualittleadviceaboutwriting【D1】______First,makeyourcharacters【D2】______Makesurethattheybehaveand
OnPowerShortage1.一些地区经常出现用电荒,尤其是在夏天和冬天的用电高峰期2.分析产生这种现象的原因3.要解决这一问题,我认为……
最新回复
(
0
)