首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明: (Ⅰ)在(a,b)内,g(x)≠0; (Ⅱ)在(a,b)内至少存在一点ξ,使。
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明: (Ⅰ)在(a,b)内,g(x)≠0; (Ⅱ)在(a,b)内至少存在一点ξ,使。
admin
2019-01-15
92
问题
设f(x),g(x)在[a,b]上二阶可导,g
’’
(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:
(Ⅰ)在(a,b)内,g(x)≠0;
(Ⅱ)在(a,b)内至少存在一点ξ,使
。
选项
答案
(Ⅰ)假设对任意的c∈(a,b)且g(c)=0。由g(a)=g(c)=g(b)=0,g(x)在[a,c],[c,b]上分别运用罗尔定理可得g
’
(ξ
1
)=g
’
(ξ
2
)=0,其中ξ
1
∈(a,c),ξ
2
∈(c,b),对g
’
(x)在[ξ
1
,ξ
2
]运用罗尔定理,可得g
’’
(ξ
3
)=0(ξ
3
∈(ξ
1
,ξ
2
))。 因已知g
’’
(x)≠0,与题设矛盾,故g(c)≠0,即在(a,b)内,g(x)≠0。 (Ⅱ)构造辅助函数F(x)=f(x)g
’
(x)-f
’
(x)g(x),则有F(a)=0,F(b)=0,在[a,b]上满足罗尔定理。 故至少存在一点ξ∈(a,b),使F
’
(ξ)=f(ξ)g
’’
(ξ)-f
’’
(ξ)g(ξ)=0,即[*]。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/pEP4777K
0
考研数学三
相关试题推荐
(02年)设一设备开机后无故障工作的时间X服从指数分布,平均无故障工作的时间(EX)为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y的分布函数F(y).
(13年)设随机变量X和Y相互独立,且X和Y的概率分布分别为则P{X+Y=2}=【】
(05年)已知齐次线性方程组同解,求a,b,c的值.
设z=f(u,χ,y),u=χey,其中f有二阶连续偏导数,求=_______.
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量.证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列.
设有齐次线性方程组Aχ=0和Bχ=0,其中A、B均为m×n矩阵.现有4个命题:【】①若Aχ=0的解均是Bχ=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Aχ=0的解均是Bχ=0的解;③若Aχ=0与B
设B是元素全都为1的n阶方阵(n>1).证明:(E-B)-1=E-B.
当x→0时,f(x)=ln(1+x)一(ax2+bx)与g(x)=xtanx是等价的无穷小,则常数a,b的取值为
设随机变量X与Y分别表示将一枚骰子接连抛两次后出现的点数.试求齐次方程组:的解空间的维数(即基础解系所含向量的个数)的数学期望和方差.
设函数p(x)和f(x)在x∈[0,+∞)上连续,且p(x)=a>0,|f(x)|≤b,a和b均为常数.试证:微分方程+p(x)y=f(x)的一切解在x∈[0,+∞)上皆有界.
随机试题
A.pH7.30,PaCO280mmHg,BE3mmol/LB.pH7.43,PaC0230mmHg,BE1mmol/LC.pH7.36,PaC0256.5mmHg,BE12mmol/LD.pH7.46,PaC022
胃溃疡应做()结肠癌应做()
A.心病B.心、胃病C.肺、喉病D.肾病、肺病、咽喉病E.前头、口齿、咽喉病,胃肠病手太阴肺经的主治特点是
某妇女初孕,妊娠36周,2天来阴道持续流液,阴道检查触不到前羊水囊,液体不断从宫口流出,临床诊断为胎膜早破。此孕妇不可能出现的并发症是()。
建设工程采用平行承发包模式的优点是()。
闪点在()℃以下的桶装、罐装易燃液体不得露天存放。
某种果蝇长翅(A)对残翅(a)为显性,直翅(B)对弯翅(b)为显性,腿上刚毛(D)对截毛(d)为显性。现有这种果蝇的一个个体基因组成如右图所示,请回答下列问题。该果蝇的初级精母细胞产生精细胞时,在染色体不发生交叉互换情况下,基因A与a分离的时期是__
张先生买了块新手表。他把新手表与家中的挂钟对照,发现手表比挂钟一天慢了三分钟;后来他又把家中的挂钟与电台的标准时对照,发现挂钟比电台标准时一天快了三分钟。张先生因此推断:他的手表是准确的。以下哪项是对张先生推断的正确评价?
(1)AUanMetcalfsnewbookclaimsthattheword"OK"isAmerica’sgreatestinvention.Thisoffersapairofprovocations.Howcan
A------SnowShowersEarlyJ------LighteningB------AMCloudsK------AirPressureC------HeavyRainL------RainfallD------Mostl
最新回复
(
0
)