首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)内二阶可导,f"(x)>0,且=β<0,又存在x0,使得f(x0)<0,试证:方程f(x)=0在(一∞,+∞)内有且仅有两个实根.
设f(x)在(一∞,+∞)内二阶可导,f"(x)>0,且=β<0,又存在x0,使得f(x0)<0,试证:方程f(x)=0在(一∞,+∞)内有且仅有两个实根.
admin
2017-07-26
74
问题
设f(x)在(一∞,+∞)内二阶可导,f"(x)>0,且
=β<0,又存在x
0
,使得f(x
0
)<0,试证:方程f(x)=0在(一∞,+∞)内有且仅有两个实根.
选项
答案
先证存在性. 由[*],存在M>0,使得当x>M时,|f’(x)一α|< [*] 于是可知:f(x)在(0,+∞)内单调增加. 任取x∈[M,+∞),f(x)在[M,x]上连续,在(M,x)内可导,由拉格朗日中值定理知,存在点ξ∈(M,x),使得f(x)=f(M)+f’(ξ)(x一M),于是 f(x)>f(M)+[*](x一M)>0. 又存在点x
0
,使得f(x
0
)<0.所以,由介值定理.存在点ξ
1
∈(x
0
,x),使f(ξ
1
)=0. 同理可证,当x<0时,存在点ξ
2
∈(x,x
0
),使得f(ξ
3
)=0. 再证唯一性.(反证法) 假若f(x)=0有三个实根ξ
1
,ξ
2
,ξ
3
(ξ
1
<ξ
2
<ξ
3
),由洛尔定理,存在η
1
∈(ξ
1
,ξ
2
),η
2
∈(ξ
2
,ξ
3
),使得 f’(η
1
)=f’(η
2
)=0. 再由洛尔定理,存在η∈(η
1
,η
2
),使f"(η)=0.与题设f"(x)>0矛盾,故f(x)=0在(一∞,+∞)内有且仅有两个实根.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ruH4777K
0
考研数学三
相关试题推荐
已知f(x)满足f’n(x)=fn(x)+xn-1ex(n为正整数),且fn(1)=e/n,求函数项级数fn(x)之和.
玻璃杯成箱出售,每箱20只,假设各箱含0、1、2只残次品的概率分别为0.8、0.1和0.1.顾客欲购一箱玻璃杯,在购买时售货员随意取一箱,而顾客随机察看该箱中4只玻璃杯,若无残次品,则买下该箱玻璃杯,否则退回.试求:(1)顾客买下该箱的概率α;
设A为3阶矩阵,α。,α为A的分别属于特征值-1,1的特征向量,向量α满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α11,α2,α3),求P-1AP.
设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为____________.
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=0,y’(0)=2的特解,则∫01y(x)dx=__________.
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2一2x1x4+2ax2x3(a<0)通过正交变换化为标准形2y12+2y22+by32.(I)求常数a,b;(Ⅱ)求正交变换矩阵;(Ⅲ)当|X|=1时,求二次
求∫x2arctanxdx.
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(6)=0,证明:存在ξ∈(a,b),使得f’(ξ)+f(ξ)g’(ξ)=0.
x)在(一∞,+∞)上连续,且f(x)=∫0xf(t)出,试证:f(x)=0(-∞<x<+∞).
随机试题
下列关于测绘合同的说法错误的是()。
工程项目设计概算的编制依据包括()
基金赎回的时间为基金合同生效日后不超过()个月。
我国公司法规定,监事会一年至少召开()次会议。
中学生晓波通过物理实验发现,钟表的摆动幅度不取决于钟摆的材料或重量,而是取决于钟摆的长度。根据皮亚杰的认知发展阶段理论,晓波的认知发展水平已达到()。
下列名言与作者的对应关系不正确的一项是()。
长期耐力性训练导致心率减慢,其机制是由于心迷走神经紧张性增强。
1931年初,土地革命中的阶级路线的内容有
已知某教务管理系统的设计人员在需求分析阶段收集到下列原始数据表格:已知该业务系统存在如下规则:I.每个教师有唯一的教师号,每个教师号对应唯一的一名教师;II.每门课程有唯一的课程号,每个课程号对应唯一的一门课程;III.每本教材有唯一的教材号,每
目前,进行电子商务最常用的终端是______。
最新回复
(
0
)