首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给定向量组(I)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时(I)和(Ⅱ)等价?a为何值时(I)和(Ⅱ)不等价?
给定向量组(I)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时(I)和(Ⅱ)等价?a为何值时(I)和(Ⅱ)不等价?
admin
2018-11-20
71
问题
给定向量组(I)α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,一1,a+2)
T
和(Ⅱ)β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.当a为何值时(I)和(Ⅱ)等价?a为何值时(I)和(Ⅱ)不等价?
选项
答案
(I)和(Ⅱ)等价用秩来刻画,即 r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=r(β
1
,β
2
,β
3
). [*] 当a+1=0时,r(α
1
,α
2
,α
3
)=2,而r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=3,因此(I)与(Ⅱ)不等价. 当a+1≠0时,r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=3. 再来计算r(β
1
,β
2
,β
3
). [*] 则r(β
1
,β
2
,β
3
)=3(与a无关).于是a+1≠0时(I)与(Ⅱ)等价.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ouW4777K
0
考研数学三
相关试题推荐
设为正定矩阵,令P=求PTCP;
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
设f(x)二阶连续可导,且f"(x)≠0,又f(x+h)=f(x)+f’(x+θh)h(0<θ<1).证明:
设总体X~N(μ,σ2),其中μ已知,σ2>0为未知参数,X1,X2,…,Xn是来自总体X的样本,则σ2的置信度为1一a的置信区间为().
已知产品某项指标X的概率密度为f(x)=e一|x一μ|,一∞<x<+∞,其中μ为未知参数.现从该产品中随机抽取3个,测得其该项指标值为1028,968,1007.(1)试用矩估计法求μ的估计;(2)试用最大似然估计法求μ的估计.
设随机变量X与Y相互独立,且方差D(X)>0,D(Y)>0,则()
设向量组a1,a2线性无关,向量组a1+b,a2+b线性相关,证明:向量b能由向量组a1,a2线性表示。
已知y1=e3x—xe2x,y2=ex—xe2x,y3=—xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=________。
计算n阶行列式,其中α≠β。
(88年)设A是3阶方阵,A*是A的伴随矩阵,A的行列式|A|=,求行列式|(3A)-1-2A*|的值.
随机试题
下列关于宏和宏组的说法中正确的是()。
患儿,女性,12岁。在学习骑自行车时,不慎跌倒,左侧肘部受伤,急诊科护士检查发现患儿有肱骨髁上骨折,送至骨科诊治。该患儿经手法复位,石膏外固定术后,以下护理措施不正确的是()
预算单价法编制施工图预算的基本步骤是()。
安全技术措施计划的主要内容包括()。
关于普通大规格饰面板安装工程的灌浆,说法错误的是( )。
合同转让的类型有()。
某公司目前拥有资金400万元,其中,普通股25万股,每股价格10元;债券150万元,年利率8%。目前的销量为5万件。单价为50元,单位变动成本为20元,固定成本为40万元,所得税税率为25%。该公司准备扩大生产规模,预计需要新增投资500万元,投
国へ帰る前、日本のあちらこちらを歩きたいです。
ポンペイはせいれき79年に火山のばくはつでうまってしまったローマ時代の都市だ。
Thepartoftheenvironmentalmovementthatdrawsmyfirm’sattentionisthedesignofcities,buildingsandproducts.Whenwe
最新回复
(
0
)