首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二阶常系数线性微分方程y"+ay’+βy=γex的一个特解为y=e2x+(1+x)ex,试确定常数α,β,γ,并求该方程的通解。
设二阶常系数线性微分方程y"+ay’+βy=γex的一个特解为y=e2x+(1+x)ex,试确定常数α,β,γ,并求该方程的通解。
admin
2022-10-13
91
问题
设二阶常系数线性微分方程y"+ay’+βy=γe
x
的一个特解为y=e
2x
+(1+x)e
x
,试确定常数α,β,γ,并求该方程的通解。
选项
答案
解法一 由题设特解知原方程的特征根为1和2,所以特征方程为 (r-1)(r-2)=0 即r
2
-3r+2=0 于是α=-3,β=2 为确定γ,只需将y
1
=xe
x
代入方程 (x+2)e
x
-3(x+1)e
x
+2xe
x
=γe
x
,解得γ=-1 从而原方程的通解为y=C
1
e
x
+C
2
e
2x
+xe
x
解法二 将y=e
2x
+(1+x)e
x
代入原方程得 (4+2α+β)e
2x
+(3+2α+β)e
x
+(1+α+β)xe
x
=γe
x
比较同类项的系数,有 [*] 解方程组得α=-3,β=2,γ=-1 即原方程为y”-3y’+2y=-e
x
,它对应的齐次方程的特征方程为r
2
-3r+2=0,解之得特征根r
1
=1,r
2
=2,故齐次方程的通解为 Y=C
1
e
x
+C
2
e
2x
由题设特解知,原方程的通解为 y=C
1
e
x
+C
2
e
2x
+[e
2x
+(1+x)e
2x
] 即y=C
3
e
x
+C
4
e
2x
+xe
x
解析
转载请注明原文地址:https://www.kaotiyun.com/show/obC4777K
0
考研数学三
相关试题推荐
设向量组(Ⅰ):α1,α2,…,αm,组(Ⅱ):β1,β2,…,βn,其秩分别为γ1,γ2,向量组(Ⅲ):α1,α2,…,αm,β1,β2,…,βn的秩为γ3,证明max{γ1,γ2}≤γ3≤γ1+γ2.
设齐次线性方程组其中0≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
求幂级数的收敛域D与和函数S(x).
设(X,Y)的联合密度函数为(I)求常数k;(Ⅱ)求X的边缘密度;(Ⅲ)求当下Y的条件密度函数fY|X(y|x).
设y=f(x)二阶可导,f’(x)≠0,它的函数是x=φ(y),又f(0)=1,f’(0)=,f’’(0)=-1,则=_________________________。
设,其中f(u,v)是连续函数,则dz=___________·
设f(x)连续,且,已知f(2)=1。求积分∫21(x)dx的值。
求(y3一3xy2一3x2y)dx+(3xy2一3x2y一x3+y2)dy=0的通解:
设有微分方程y’-2y=q(x),其中试求在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足微分方程,且满足条件y(0)=0.
随机试题
林某,男,历岁。发作性喉间痰鸣气促20年,平时短气,动则加剧,心慌,耳鸣,腰膝酸软,时有烦热,颧红。舌红,少苔,脉细数。检查:双肺闻及哮鸣音,胸部X线示双肺透亮度增高,膈肌下移。宜选用方
A.Turner综合征B.21-三体综合征C.粘多糖病D.先天性甲状腺功能减低症E.软骨发育不良2岁男孩,智力落后,表情呆滞,眼距宽,眼裂小,鼻梁低平,舌体细尖,常伸出于口外,皮肤细腻,右侧通贯手。肌张力低下。最可能的诊断是
A.根据药物经济学评价,可被成本效益比更优的品种所替代的药品B.有效性和安全性证据明确、成本效益比现有基本药物更优的药品C.除急救、抢救用药外的独家生产药品品种D.主要用于滋补保健作用、易滥用的药品根据《国家基本药物目录管理办法》:应当从国家基本
《素问.平人气象论》指出虚里是()。
关于投资性房地产的后续计量,下列说法中正确的有()。
关于我国现行外汇市场,下列选项表述正确的是()。
我们始终存在着一个认识上的误区,即认为秉承公平、公正及公心,就能够选拔到优秀的社会精英充实到各级各类的干部队伍中,所谓“伯乐相马”,一向被传为美德。但是,历史的经验告诉我们,相比于其他任何事务的管理,对于人的管理的“求解”难度往往更大,过程也更为复杂。迄今
长时记忆和短时记忆在时间上的划分界线为()。
Women’sfertilityisdeterminedinlargepartatbirth.Theyarebomwiththeirtotalnumberofreproductivecells,whichnormal
设平衡的二叉排序树(AVL树)的结点个数为n,则其平均检索长度为
最新回复
(
0
)