首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
确定常数0,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
确定常数0,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
admin
2020-03-16
59
问题
确定常数0,使向量组α
1
=(1,1,a)
T
,α
2
=(1,a,1)
T
,α
3
=(a,1,1)
T
可由向量组β
1
=(1,1,a)
T
,β
2
=(-2,a,4)
T
,β
3
=(-2,a,a)
T
线性表示,但向量组β
1
,β
2
,β
3
不能由向量组α
1
,α
2
,α
3
线性表示.
选项
答案
因为α
1
,α
2
,α
3
,β
1
,β
2
,β
3
线性表示,故三个方程组 x
1
β
1
+x
2
β
2
+x
3
β
3
=α
i
(i=1,2,3) 均有解,对增广矩阵作初变换,有 [*] 可见a≠4,a≠-2时,α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示。 向量组β
1
,β
2
,β
3
不能由向量组α
1
,α
2
,α
3
线性表示, 即有方程组 x
1
α
1
+x
2
α
2
+x
3
α
3
=β
j
(j=1,2,3) 无解,对增广矩阵作初变换,有 [*] 可见,a=1,a=-2时,β
2
,β
3
不能由α
1
,α
2
,α
3
线性表示。 因此a=1时向量组α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示。但向量组β
1
,β
2
,β
3
不能由向量组α
1
,α
2
,α
3
线性表示,
解析
转载请注明原文地址:https://www.kaotiyun.com/show/oOA4777K
0
考研数学二
相关试题推荐
[2016年]设函数f(x)=∫01∣t2-x2∣dt(x>0),求f′(x),并求f(x)的最小值.
[2006年]证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa.
[2009年]曲线在点(0,0)处的切线方程为__________.
设D是由曲线y=(0≤x≤1)与(0≤f≤)围成的平面区域,求D绕X轴旋转一周所得旋转体的体积和表面积.
已知函数f(x)满足方程f〞(x)+fˊ(x)-2f(x)=0及fˊ(x)+f(x)=2ex,(1)求f(x)的表达式;(2)求曲线的拐点.
(2006年)设数列{χn}满足0<χ1<π,χn+1=sinχn(n=1,2,…).(Ⅰ)证明χn存在,并求该极限;(Ⅱ)
求下列极限:
设f(χ)=,求f(χ)的间断点并判断其类型.
设函数讨论函数f(x)的间断点,其结论为().
设矩阵,若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为().
随机试题
(2010年4月)根据《商标国际注册马德里协定》规定,商标的国际注册在任何成员国生效后,保护期限为_____,且可无限制续展。
简述数据收集和调查的常用方法。
《春江花月夜》的主旨是()
高眼压作用下,混有虹膜组织的角膜瘢痕易形成
具有消食化积,行气散瘀功效的是()
下列属于一般情况下子女教育财产投入风险的是( )。
最初的人类。为了寻找足够的食物,经常过着一种漂泊不定的生活,漂泊到一个地方,即随便找个临时夜宿处。这种时常迁徙但又随遇而安的居住方式,应当视作人类从巢居形式进入穴居形式之前所经历的一个过渡阶段。对文中“过渡阶段”的概括最正确的一项是()
张居正调抗倭名将()镇守蓟门,对安定北方人民的生活和保障社会生产的发展起了积极作用。
下列选项中,属于处断的一罪的是()
Whatisaphrasebookdesignedfor?
最新回复
(
0
)