首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a,b,c为实数,求证:曲线y=ex与y=ax2+bx+c的交点不超过三个.
设a,b,c为实数,求证:曲线y=ex与y=ax2+bx+c的交点不超过三个.
admin
2018-11-21
49
问题
设a,b,c为实数,求证:曲线y=e
x
与y=ax
2
+bx+c的交点不超过三个.
选项
答案
令f(c)=e
x
一ax
2
—bx—c,那么问题等价于证明f(x)的零点不超过三个.假设结论不正确,则至少有四个点x
1
<x
2
<x
3
<x
4
,使得f(x
i
)=0,i=1,2,3,4. 由于f(x)在[x
1
,x
4
]上可导,由罗尔定理可知f’(x)在(x
1
,x
2
),(x
2
,x
3
),(x
3
,x
4
)内至少各有一个零点ξ
1
,ξ
2
,ξ
3
.又由于f’(x)在[ξ
1
,ξ
3
]上可导,由罗尔定理可知f"(x)在(ξ
1
,ξ
2
),(ξ
2
,ξ
3
)内至少各有一个零点η
1
,η
2
.同样地,由于f"(x)在[η
1
,η
2
]上可导,由罗尔定理可知f"’(x)在(η
1
,η
2
)内至少有一个零点ζ.因此至少存在一点ζ∈(一∞,+∞)使得f"’(ζ)=0,而f"’(x)=e
x
>(戈∈(一∞,+∞)),这就产生了矛盾.故f(x)的零点不超过三个.
解析
问题等价于f(x)=e
x
一ax
2
一bx—c的零点不超过三个.根据罗尔定理,可导函数的任何两个零点之间至少存在一个导函数的零点.因此本题需要用反证法.
转载请注明原文地址:https://www.kaotiyun.com/show/npg4777K
0
考研数学一
相关试题推荐
设A,B,C,D是4个四阶矩阵,其中A≠O,|B|≠0,|C|≠0,D≠O,且满足ABCD=O.若r(A)+r(B)+r(C)+r(D)=r,则r的取值范围是().
已知n维向量α1,α2,…,αs线性无关,如果n维向量β不能由α1,α2,…,αs线性表出,而γ可由α1,α2,…,αs线性表出,证明α1,α1+α2,α2+α3,…,αs-1+αs,β+γ线性无关.
设S为椭球+z2=1的上半部分,已知S的面积为A,则第一类曲面积分(4x2+9y2+36z2+xyz)dS=_____________.
设A=(1)将A表示成若干个初等矩阵的乘积;(2)将A表示成一个主对角元为1的下三角矩阵R和一个上三角矩阵S的乘积.
微分方程y″+2y′+y=xe-x的特解形式为().
求,a为任意正实数.
已知微分方程y’’+6y’+y=0的每个解都在区间(0,+∞)上有界,则实数b的取值范围是()
设二维随机变量(X,Y)的联合概率密度为求:(Ⅰ)系数A;(Ⅱ)(X,Y)的联合分布函数;(Ⅲ)边缘概率密度;(Ⅳ)(X,Y)落在区域R:x>0,y>0,2x+3y<6内的概率。
设X1,X2,…,Xn是取自总体X的简单随机样本,X的概率密度函数为f(x)=,-∞<x<+∞,则λ的最大似然估计量=______。
已知曲线L为圆x2+y2=a2在第一象限的部分,则=________。
随机试题
通过“教育与发展的关系问题”的实验来发展教育理论,并著有《和教师的谈话》《教学与发展》等作品的教育家是()。
子宫内膜癌的高危因素不包括()
概算定额的作用包括()
对违法行使职权给行政相对人的人身权、财产权造成损害的行政事实行为,行政相对人()。
进城务工的张某夫妇超计划生育一女孩,今年已满六岁,由于没有准生证,他们临时住所附近的一所小学及当地教育局拒绝接收该女孩入学。学校和教育局的行为违反了()
凡事要付出,快乐就是痛苦的付出。这句话你如何理解?
《春节联欢晚会》是()年开播的。
下面语句会产生编译错误的是
Withflakingpaintandrustydoors,manyfactoriesintheprovinceofBiellainnorth-westItalystandidle.Productionofthew
A、Becausehelikeslearning.B、Becausehishearingcenterisstillimmature.C、Becausehisearsareimmature.D、Becausehewants
最新回复
(
0
)