首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a为常数,讨论两曲线y=ex与的公共点的个数及相应的a的取值范围.
设a为常数,讨论两曲线y=ex与的公共点的个数及相应的a的取值范围.
admin
2018-07-23
116
问题
设a为常数,讨论两曲线y=e
x
与
的公共点的个数及相应的a的取值范围.
选项
答案
若a=0,则易知y=e
x
与y=0无公共点,以下设a≠0.讨论y=e
x
与[*]交点的个数,等同于讨论方程[*]的根的个数,亦即等同于讨论函数 f(x)=xe
x
-a 的零点个数. [*] 得唯一驻点x
0
=-1.当x<-1时,fˊ(x)<0;当x>-1时,fˊ(x)>0.所以 min{f(x)}=f(-1)=-e
-1
-a. 又 [*] ①设-e
-1
-a >0,即设a<-e
-1
,则min{ f (x)}>0,f (x)无零点; ②设-e
-1
-a=0,即设a=-e
-1
,则f(x)有唯一零点x
0
=-1; ③设-e
-1
-a <0,即设a>-e
-1
.又分两种情形: (i)设-e
-1
<a<0.则有f(-∞)=-a >0.f(-1)=-e
-1
-a <0.而在区间(-∞,-1)内f(x)单调递减,在区间(-1,+∞)内f(x)单调递增.故f(x)有且仅有两个零; (ii)设a>0.易知f(x)=xe
x
在区间(-∞,0]内无零点,而在区间(0,+∞)内,f(0)=-a <0,f(+∞)=+∞,fˊ(x)=(x+1)e
x
>0,所以f(x)在区间(0,+∞)内刚好有1个零点.讨论完毕. 综上,结论是: 当a<-e
-1
或a=0时,无交点;当a=-e
-1
时,有唯一交点(切点);当-e
-1
<a<0时.有两个交点;当a>0时,在区间(-∞,0]内无交点.而在区间(0,+∞)内,即第一象限内有唯一交点.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/noj4777K
0
考研数学二
相关试题推荐
[*]
(2003年试题,二)设向量组I:α1,α2……αs,可由向量组Ⅱ:β1β2……βs,线性表示,则().
(2000年试题,八)设函f(x)在[0,π]上连续,且试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
二元函数f(x,y)在点(0,0)处可微的一个充分条件是
若曲线y=x2+ax+b和2y=-1+xy3在点(1,-1)处相切,其中a,b是常数,则().
计算下列积分:
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
[*]注解求n项之积或和的极限常用方法有:(1)先计算其积或和,再计算其极限;(2)夹逼定理;(3)定积分
下列广义积分发散的是().
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明:在[一a,a]上存在η,使a3f"(η)=3∫-aaf(x)dx.
随机试题
宫颈糜烂伴有鳞状上皮化生提示:
教学计划应根据()而制定。
左心力衰竭最有诊断意义的体征是下列哪一项
根据《民事诉讼法》和相关司法解释,关于中级法院,下列哪一表述是正确的?(2011年卷三第39题)
发生管辖争议的,旅游投诉处理机构()协商确定,或者报请共同的上级旅游投诉处理机构指定管辖。
加强内部合作,对员工的益处在于()
一般来说,企业员工个体素质的构成包括()。
公开审判是指法院对案件的审理过程和判决结果向群众、向社会公开的制度,包括公开审理和公开宣判。下列关于公开审判制度的表述,哪一项是正确的?()
Cultureshockmightbecalledan【1】diseaseofpeoplewhohavebeensuddenly【2】abroad.Likemostailments,ithasitsown【3】andc
Smallbusinessownersmustaccepttheburdensofentrepreneurship.Beinginbusinessforyour-selfrequiresyourfullattention
最新回复
(
0
)