首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内连续且严格单调增加,f(0)=0,常数n为正奇数.并设.则正确的是 ( )
设f(x)在(-∞,+∞)内连续且严格单调增加,f(0)=0,常数n为正奇数.并设.则正确的是 ( )
admin
2019-01-24
61
问题
设f(x)在(-∞,+∞)内连续且严格单调增加,f(0)=0,常数n为正奇数.并设
.则正确的是 ( )
选项
A、F(x)在(-∞,0)内严格单调增加,在(0,+∞)内也严格单调增加.
B、F(x)在(-∞,0)内严格单调增加,在(0,+∞)内严格单调减少.
C、F(x)在(-∞,0)内严格单调减少,在(0,+∞)内严格单调增加.
D、F(x)在(-∞,0)内严格单调减少,在(0,+∞)内也严格单调减少.
答案
C
解析
法一 利用积分中值定理,有
其中,若x>0,则0<ξ<x;若x<0,则x<ξ<0.
当x>0时,则有0<ξ
n
<x
n
,由于f(x)严格单调增加且f(0)=0,从而0<f(ξ)<f(x),即
0<ξ
n
f(ξ)<x
n
f(x).于是F'(x)>0;
当x<0时,则有x
n
<ξ
n
<0,并且f(x)<f(ξ)<0.于是仍有x
n
f(x)>ξ
n
f(ξ)>0.所以
F'(x)<0.选(C).
法二
当x>0时,0<t<x,0<f(t)<f(x),0<t
n
f(t)<x
n
f(x),从而F'(x)>0;
当x<0时,x<t<0,x
n
<t
n
<0,f(x)<f(t)<0,于是t
n
f(t)<x
n
f(x),
,
从而F'(x)<0.故选(C).
转载请注明原文地址:https://www.kaotiyun.com/show/nSM4777K
0
考研数学一
相关试题推荐
设A=已知线性方程组Ax=b存在2个不同的解,(Ⅰ)求λ,a;(Ⅱ)求方程组Ax=b的通解.
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)≤a,|f"(x)≤b.苴中a,b都是非负常数,c是(0,1)内任意一点.证明|f’(c)≤2a+.
设f(x)在(一1,1)内具有二阶连续导数,且f"(x)≠0.证明:(1)对于任意的x∈(一1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立.(2).
总体X~N(2,σ2),从X中抽得简单样本X1,…,Xn.试推导σ2的置信度为1一α的置信区间.若样本值为:1.8,2.1,2.0,1.9,2.2,1.8.求出σ2的置信度为0.95的置信区间.(χ0.9752(6)=14.449,χ0.0252(6)=1
随机变量X可能取的值为-1,0,1.且知EX=0.1,EX2=0.9,求X的分布列.
计算行列式.
微分方程y’一xe-y+=0的通解为_________.
在过点O(0,0)和A(π,0)的曲线族y=asinx(a>0)中,求一条曲线L,使沿该曲线从点O到A的积分I=∫L(1+y3)dx+(2x+y)dy的值最小.
求不定积分.
设f(x)可导,且F(x)=f(x)(1+|sinx|)在x=0处可导,则().
随机试题
在旅游过程中,导游人员应始终保持清醒头脑,处事沉着、冷静、有条不紊。()
器官移植前供、受体要做哪些免疫学检查()
消化性溃疡病人服用氢氧化铝凝胶的正确方法是
饮片呈类月牙形薄片,外表面紫红色或红棕色,具不规则的深皱纹,切面棕红色,质坚硬,气微,味酸涩的是()
医疗机构必须有使用许可证才可使用的药品是()
根据票据法律制度的规定,下列关于汇票提示承兑的表述中,正确的有()。
甲、乙两校图书馆的存书量之比为7:5,如果甲校给乙校10本书,那么两校的存书量之比就变为4:3。但实际上乙校给了甲校一些书,导致两校的存书量之比变为2:1。那么,乙校给了甲校多少本书?
蛋:卤蛋:松花蛋
简述“八年研究”。
十进制数221用二进制数表示是
最新回复
(
0
)