首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组(Ⅰ)为齐次线性方程组(Ⅱ)的基础解系为ξ1=[-1,1,2,4]T,ξ2=[1,0,1,1]T. 求方程组(Ⅰ)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(Ⅰ),(Ⅱ)的基础解系线性表示.
已知齐次线性方程组(Ⅰ)为齐次线性方程组(Ⅱ)的基础解系为ξ1=[-1,1,2,4]T,ξ2=[1,0,1,1]T. 求方程组(Ⅰ)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(Ⅰ),(Ⅱ)的基础解系线性表示.
admin
2021-07-27
69
问题
已知齐次线性方程组(Ⅰ)为
齐次线性方程组(Ⅱ)的基础解系为ξ
1
=[-1,1,2,4]
T
,ξ
2
=[1,0,1,1]
T
.
求方程组(Ⅰ)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(Ⅰ),(Ⅱ)的基础解系线性表示.
选项
答案
解得方程组(Ⅰ)的基础解系η
1
,η
2
,于是,方程组(Ⅰ)的通解为k
1
η
1
+k
2
η
2
=k,[2,-1,1,0]
T
+k
2
[-1,1,0,1]
T
(k
1
,k
2
为任意常数).由题设知,方程组(Ⅱ)的基础解系为ξ
1
,ξ
2
,其通解为l
1
ξ
1
+l
2
ξ
2
=l
1
[-1,1,2,4]
T
+l
2
[1,0,1,1]
T
(l
1
,l
2
为任意常数).为求方程组(Ⅰ)与(Ⅱ)的公共解,令它们的通解相等,即k
1
[2,-1,1,0]
T
+k
2
[-1,1,0,1]
T
=l
1
[-1,1,2,4]
T
+l
2
[1,0,1,1]
T
.从而,得到关于k
1
,k
2
,l
1
,l
2
的方程组[*]对此方程组的系数矩阵作初等行变换,得[*]由此可得,k
1
=k
2
=l
2
,l
1
=0.所以,令k
1
=k
2
=k,方程组(Ⅰ),(Ⅱ)的非零公共解是k[2,-1,1,0]
T
+k[-1,1,0,1]
T
=k[1,0,1,1]
T
(k为任意非零常数).并且,方程组(Ⅰ),(Ⅱ)的非零公共解分别由方程组(Ⅰ),(Ⅱ)的基础解系线性表示为k(η
1
+η
2
)和kξ
2
,其中k为任意非零常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/nLy4777K
0
考研数学二
相关试题推荐
设A为m×n矩阵,B为n×m矩阵,且m>n,则必有()
n阶矩阵A和B具有相同的特征值是A和B相似的()
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
设函数f(χ)在[0,π]上连续,且∫0πf(χ)sinχdχ=0∫0πf(χ)cosχdχ,=0.证明:在(0,π)内f(χ)至少有两个零点.
设A为m×n矩阵,且r(A)=m,则()
设n(n≥3)阶矩阵若r(A)=n一1,则a必为
向量组α1,α2,…,αs线性无关的充分条件是
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
某五元齐次线性方程组的系数矩阵经初等变换,化为.则自由变量可取为(1)x4,x5.(2)x3,x5.(3)x1,x5.(4)x2,x3.那么正确的共有()
问λ为何值时,线性方程组有解,并求出解的一般形式.
随机试题
宫颈癌扩展超出真骨盆,按FIGOI临床分期,应属于
下列哪项是胆囊或肝内胆管排石的指标()。
(2009年)某一弱酸的标准解离常数为1.0×10-5,则相应强碱弱酸盐MA的标准水解常数为()。
混凝土的耐久性包括()等性能。
工程量清单计价方法与定额计价方法的区别包括()。
一座建筑高度为55m的新建办公楼,无裙房,矩形平面尺寸为80m×20m,沿该建筑南侧的长边连续布置消防车登高操作场地。该消防车登高操作场地的在最小平面尺寸应为()。
下列选项中,不属于商业银行市场风险限额管理的是()。
《鉴定书》由()签名。
女性,70岁,左面颊部皮肤瘙痒、疼痛、糜烂1年,病灶逐渐增大,现面积己达1.5cm2,手术标本病理诊断为高分化鳞癌。下述不符合本病的是
(1)Thecommunicationsexplosionisonthescaleoftherail,automobileortelephonerevolution.Verysoonyou’llbeabletore
最新回复
(
0
)