首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αn-1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
设向量组α1,α2,…,αn-1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
admin
2022-04-02
51
问题
设向量组α
1
,α
2
,…,α
n-1
为n维线性无关的列向量组,且与非零向量β
1
,β
2
正交.证明:β
1
,β
2
线性相关.
选项
答案
令A=[*]因为α
1
,α
2
,…,α
n-1
与β
1
,β
2
正交,所以Aβ
1
=0,Aβ
2
=0,即β
1
,β
2
为方程组AX=0的两个非零解,因为r(A)=n-1,所以方程组AX=0的基础解系含有一个线性无关的解向量,所以β
1
,β
2
线性相关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/m1R4777K
0
考研数学三
相关试题推荐
设向量组(I)α1,α2,…,αn,其秩为r1,向量组(Ⅱ)β1,β2,…,βn,其秩为r2,且βi(i=l,2,…,s)均可以由α1,…α1线性表示,则().
已知a1=(-1,1,a,4)T,a2=(-2,1,5,a)T,a3=(a,2,10.1)T是四阶方阵A的属于三个不同特征值的特征向量,则a的取值为().
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
设f(x)是[0,1]上单调减少的正值连续函数,证明∫01xf2(x)dx.∫01f3(x)dx≥∫01f3(x)dx.∫01f2(x)dx,即要证I=∫01f2(x)dx.∫01f3(x)dx一∫01xf3(x)dx.∫01f2(x
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A2;
已知方程组有解,证明:方程组无解.
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为α1=[2,-1,a+2,1]T,α2=[-1,2,4,a+8]T.当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数。试利用中心极限定理估计:试当n=1500时求舍位误差之和的绝对值大于15的概率;
设a0,a1,an-1是n个实数,方阵(1)若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量;(2)若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使Pλ1AP=A.
随机试题
米开朗基罗的代表作品有《哀悼基督》《大卫》《雅典学院》。[安徽2019]()
患者,男,33岁,患食积证前来就医。医生决定选用甘温生发之品,入脾、胃经,善消导,兼补虚的药物。该药物是
某企业2003年转让一幢新建办公楼取得收入5000万元,该办公楼建造成本和相关费用2500万元,缴纳与转让办公楼相关的税金200万元(其中印花税金2.5万元)。该企业应缴纳的土地增值税为( )元。
请分别从主、客观方面说明辛亥革命失败的原因。
中国陶瓷,凡一新品种诞生,其由小到大、由弱到强的演变,脉络清晰。但元青花没有童年,没有少年,当你看见它时,它俨然已是一个风华正茂的青年。在人们的印象中,蒙古人善武而不善文,所以如此精美的青花瓷出自蒙古人之手太让人不可思议。再有,元青花出现之前,中华文明的传
“三个和尚没水喝”说明的是,人浮于事可能反而不如人少好办事。但是反过来,如果“三个和尚”都很负责,结果也许会造成水满为患。这两种不同的说法表明______。
普通法与衡平法的划分方法属于______。
Evidenceofthebenefitsthatvolunteeringcanbringolderpeoplecontinuestorollin."Volunteershaveimprovedphysicalands
Ialwayseatbreakfast,andsuggestthatyoudotoo.Weallneedfoodinthemorningtosupplyourselves【C1】________sourcesofg
Don’ttrusthim.Heis______sometricks.
最新回复
(
0
)