首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为。 证明A+E为正定矩阵,其中E为三阶单位矩阵。
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为。 证明A+E为正定矩阵,其中E为三阶单位矩阵。
admin
2019-01-23
68
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax在正交变换x=Qy下的标准形为y
1
2
+y
2
2
,且Q的第三列为
。
证明A+E为正定矩阵,其中E为三阶单位矩阵。
选项
答案
证明:因为(A+E)
T
=A
T
+E=A+E,所以A+E为实对称矩阵。 又因为A的特征值为1,1,0,所以A+E特征值为2,2,1,都大于0,因此A+E为正定矩阵。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/lmP4777K
0
考研数学三
相关试题推荐
已知a0=3,a1=5,对任意的n>1,有nan=an—1—(n一1)an—1.证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).
微分方程F(x,y4,y’,(y")2)=0的通解中应含有()个任意常数.
已知A是n阶实对称矩阵,λ1,λ2,…,λn是A的特征值,ξ1,ξ2,…,ξn是A对应的n个标准正交特征向量,证明:A可表示为A=λ1ξ1ξ1T+λ2ξ2ξ2T+…+λnξnξnT.
已知非齐次线性方程组有3个线性无关的解.(1)证明:方程组的系数矩阵A的秩r(A)=2.(2)求a,b的值及方程组的通解.
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn—r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn—r=ξn—r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ0η
设区域D是x2+y2≤1在第一、四象限的部分,f(x,y)在D上连续,则二重积分f(x,y)dxdy=().
设随机变量X和Y相互独立,其概率密度为求随机变量Z=XY的概率密度g(x).
设二次型f(x1,x2,x3)=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3的矩阵A满足AB=B,其中B=.用正交变换化二次型为标准形,并写出所用正交变换.
设λ1,λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1,λn的特征向量,记求二元函数的最大值及最大值点。
设有抛物线Γ:y=a-bx2(a>0,b>0),试确定常数a,b的值,使得满是以下两个条件:(1)Γ与直线y=x+1相切;(2)Γ与x轴所围图形绕y轴旋转所得旋转体的体积为最大.
随机试题
破坏性可靠性是指汽车产品在破坏性使用条件下,规定的操作次数(或里程或时间)内完成规定功能的能力。()
A.利湿化浊,清热解毒B.利湿清热,疏风止痛C.利水消肿,理气健脾D.温肾利湿,分清化浊当归拈痛汤的功用是
下列哪项不是孕激素的生理作用
根据《药品不良反应报告和监测管理办法》使用药品后,导致患者身体出现畸形的药品不良反应属于
《危险性较大的分部分项工程安全管理办法》规定,超过一定规模的危险性较大的分部分项工程专项方案,应当由施工单位组织召开专家论证会,根据论证报告修改完善专项方案,并经()签字后,方可组织实施。
以下不属于健康模式的心理评估的是()
根据我国宪法规定,上级人民检察院与下级人民检察院之间的关系是
YouaretheadministratorforEzonexam.com’snetwork.YournetworkincludesWindows2000Professionalclientcomputers,Windows
A、Byusingsatelliteimages,maps,etc.B、Bystudyingspecificfanningmethods.C、Bystudyingthevariationofhumanpopulation.
Ifyouwanttostayyoung,sitdownandhaveagoodthink.Thisistheresearch【C1】______ofateamofJapanesedoctors,whosay
最新回复
(
0
)