首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行是(a b c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
已知3阶矩阵A的第一行是(a b c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
admin
2014-01-26
146
问题
已知3阶矩阵A的第一行是(a b c),a,b,c不全为零,矩阵B=
(k为常数),且AB=0,求线性方程组Ax=0的通解.
选项
答案
由AB=0知,B的每一列均为Ax=0的解,且r(A)+r(B)≤3. (1)若k≠9,则r(B)=2,于是r(A)≤1,显然r(A)≥1,故r(A)=1.可见此时Ax=0的基础解系所含解向量的个数为3=r(A)=2,矩阵B的第一、第三列线性无关,可作为其基础解系,故Ax=0的通解为:[*],k
1
,k
2
为任意常数. (2)若k=9,则r(B)=1,从而1≤r(A)≤2. ①若r(A)=2,则Ax=0的通解为[*],k
1
为任意常数. ②若r(A)=1,则Ax=0的同解方程组为ax
1
+bx
2
+cx
3
=0,不妨设a≠0,则其通解为[*],k
1
,k
2
为任意常数.
解析
[分析] AB=0,相当于已知B的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,这又转化为确定系数矩阵A的秩.
[评注] AB=0这类已知条件是反复出现的,应该明确其引申含义:
1.B的每一列均为Ax=0的解;
2.r(A)+r(B)≤n.
转载请注明原文地址:https://www.kaotiyun.com/show/lm34777K
0
考研数学二
相关试题推荐
(2009年)求二元函数f(x,y)=x2(2+y2)+ylny的极值。
(1987年)某商品的需求量x对价格p的弹性η=一3p3,市场对该商品的最大需求量为1(万件),求需求函数.
(06年)证明:当0<a<b<π时,bsinb+2cosb+π6>asina+2cosa+πa.
(99年)设生产某种产品必须投入两种要素,χ1和χ2分别为两要素的投入量,Q为产出量;若生产函数为Q=2χ1αχ2β,其中α,β为正常数,且α+β=1,假设两种要素的价格分别为p1和p2,试问:当产量为12时,两要素各投入多少可以使得投入总费用最小?
(01年)已知抛物线y=pχ2+qχ(其中P<0,q>0)在第一象限内与直线χ+y=5相切,且抛物线与χ轴所围成的平面图形的面积为S.(1)问P和q为何值时,S达到最大值?(2)求出此最大值.
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明:(Ⅰ)0≤∫axg(t)dt≤x一a,x∈[a,b](Ⅱ)≤∫abf(x)g(x)dx。
[2008年]设n元线性方程组AX=b,其中证明行列式|A|=(n+1)an;
(90年)若线性方程组有解,则常数α1,α2,α3,α4应满足条件_______.
(89年)若齐次线性方程组只有零解,则λ应满足的条件是_______.
设线性方程组(1)与方程x1+2x2+x3=a一1(2)有公共解,求a的值及所有公共解。
随机试题
低温容器用钢应考虑钢材的低温脆性问题,选材时首先要考虑钢的冲击韧性。
口腔颌面部肿瘤治疗强调的三联疗法是指
远志的主要成分有
A.浸出物法B.高效液相色谱法C.分光光度法D.薄层光密度法E.浸出物测定法
“中华人民共和国公民有依照法律纳税的义务”这一规则是()。
有关MMPI-2记分方法,下列说法中不正确的是()。
张某在某商店看到一款名牌手表标价800元,觉得很划算,就买了,商店售出后发现,是营业员错将8000元标成了800元。商店找到张某要求他补足货款,张某予以拒绝,并称已口头允诺要将手表送给李某。于是,商场便将张某起诉至法院,张某接到传票后,撤销了与李某间的赠与
新时期最突出的标志是()。
设a1=1,证明:数列{an}收敛,并求
WhatisNOTtrueaboutTheFifthElement?
最新回复
(
0
)