首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明: (Ⅰ)0≤∫axg(t)dt≤x一a,x∈[a,b] (Ⅱ)≤∫abf(x)g(x)dx。
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明: (Ⅰ)0≤∫axg(t)dt≤x一a,x∈[a,b] (Ⅱ)≤∫abf(x)g(x)dx。
admin
2021-01-25
104
问题
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明:
(Ⅰ)0≤∫
a
x
g(t)dt≤x一a,x∈[a,b]
(Ⅱ)
≤∫
a
b
f(x)g(x)dx。
选项
答案
(I)因为0≤g(x)≤1,所以由定积分比较定理可知,∫
a
x
0dt≤∫
a
x
g(t)dt≤∫
a
x
1dt, 即0≤∫
a
x
g(t)dt≤x一a成立,x∈[a,b]。 (Ⅱ)令F(x)=∫
a
x
f(t)g(t)dt—[*]且F(a)=0。 F’(x)=f(x)g(x)一f[a+∫
a
x
g(t)dt]g(x)=g(x){f(x)-f[a+∫
a
x
g(t)dt]}, 由(I)可知∫
a
x
g(t)dt≤x一a,所以a+∫
a
x
g(t)dt≤x。f(x)是单调递增函数,可知 f(x)一f[a+∫
a
x
g(t)dt]≥0。 又因为0≤g(x)≤1,所以F’(x)≥0,即F(x)单调递增,所以F(b)≥F(a)=0,得证。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Q5x4777K
0
考研数学三
相关试题推荐
设F1(x)与F2(x)分别为随机变量X1与X2的分布函数,为使F(x)=aF1(x)=bF2(x)是某一随机变量的分布函数,在下列给定的各组值中应取().
设随机变量X在区间(0,1)上服从均匀分布,在X=x(0<x<1)的条件下,随机变量Y在区间(0,x)上服从均匀分布.求:概率P(X+Y>1).
证明:方阵A与所有同阶对角矩阵可交换的充分必要条件是A是对角矩阵.
某保险公司对多年来的统计资料表明,在索赔户中被盗索赔户占20%,以X表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.[附表]设Φ(x)是标准正态分布函数.写出X的概率分布;
试证明n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式其中αTi表示列向量αi的转置,i=1,2,…,n.
[2009年]袋中有一个红球、两个黑球、三个自球.现在有放回地从袋中取两次,每次取一个,以X,Y,Z分别表示两次取球所取得的红、黑与白球个数.求二维随机变量(X,Y)的概率分布.
交换积分次序=_______________。
某公司每年的工资总额在比上一年增加20%的基础上再追加200万元.若以ωi表示第i年的工资总额(单位为万元),则ωi满足的差分方程是_________.
设某厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时总收益函数为R(x,y)=27x+42y-x2-2xy-4y2,总成本函数为C(x,y)=36+12x+8y(单位:万元)。除此之外,生产甲种产品每吨还需支付排污费1万元,生产乙种产品每
设求
随机试题
简述直接效益对特殊儿童成长的意义。
引觞满酌,颓然就醉。引觞:
发现震颤后应首先确定___________及___________,其次确定其处于心动周期的___________,最后分析其临床意义。
案情:甲与乙分别出资60万元和240万元共同设立新雨开发有限公司(下称新雨公司),由乙任执行董事并负责公司经营管理,甲任监事。乙同时为其个人投资的东风有限责任公司(下称东风公司)的总经理,该公司欠白云公司货款50万元米还。乙与白云公司达成协议约定:若3个月
固定资产折旧的方法很多,而企业的固定资产一般采用()计提折旧。
在主存储器和CPU之间增加Cache的目的是__________。
下面不能作为结构化方法软件需求分析工具的是
OnThursday1willhavetodecidewhat1wantmyselfto【76】______dooveraweekend.Iamthinkingofmakingatrip
Inthesecondhalfofeachyear,manypowerfulstormsareborninthetropicalAtlanticandCaribbeanseas.Of【1】,onlyaboutha
Teachersneedtobeawareoftheemotional,intellectual,andphysicalchangesthatyoungadultsexperience.Andtheyalsoneed
最新回复
(
0
)