首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x.若f’(0)=0,求f(u)的表达式.
设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x.若f’(0)=0,求f(u)的表达式.
admin
2022-07-21
65
问题
设函数f(u)具有二阶连续导数,z=f(e
x
cosy)满足
=(4z+e
x
cosy)e
2x
.若f’(0)=0,求f(u)的表达式.
选项
答案
设u=e
x
cosy,则z=f(u)=f(e
x
cosy),于是 [*] 由条件[*]=(4z+e
x
cosy)e
2x
,可知f’’(u)=4f(u)+u,这是一个二阶常系数线性非齐次微分方程. 对应齐次方程的通解为: f(u)=C
1
e
2u
+C
2
e
-2u
,其中C
1
,C
2
为任意常数 对应非齐次方程特解可求得为y
*
=-[*]u,故非齐次方程通解为 f(u)=C
1
e
2u
+C
2
e
-2u
-[*]u 将初始条件f(0)=0,f’(0)=0代入,可得C
1
=1/16,C
2
=-1/16,所以f(u)的表达式为 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/lGf4777K
0
考研数学二
相关试题推荐
设f(x,y)与φ(x,y)均为可微函数,且φ’’(x,y)≠0。已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是()
设f(χ)是二阶常系数非齐次线性微分方程y〞+Py′+qy=sin2χ+2eχ的满足初始条件f(0)=f′(0)=0的特解,则当χ→0时,().
设非齐次线性方程组Ax=b有两个不同解β1和β2,其导出组的一个基础解系为α1,α2,c1,c2为任意常数,则方程组Ax=b的通解为
设g(x)=∫0xf(u)du,其中则g(x)在区间(0,2)内
设z=f(χ,y)是由e2yχ+χ+y2+z=确定的函数,则=_______.
微分方程y’’一y’+=0的通解为______。
设f(χ,y,z)=eχyz2,其中z=z(χ,y)是由χ+y+z+χyz=0确定的隐函数,则f′χ(0,1,-1)=_______.
设二元可微函数F(x,y)在直角坐标系中可写成F(x,y)=f(x)+g(y),其中f(x),g(y)均为可微函数,而在极坐标系中可写成F(x,y)=H(r)(r=),求此二元函数F(x,y).
设f(x)在区间[1,+∞)上单调减少且非负的连续函数一∫0nf(x)dx(n=1,2,…).(1)证明:(2)证明:反常积分∫1+∞f(x)dx与无穷级数同敛散.
随机试题
在电桥型号中,高压电容电桥的型号是()。
外科病人发生代谢性碱中毒的最常见原因是【】
地方性水资源、土壤、森林、草原、野生生物是可更新的自然资源。()
错觉是()
某航站楼广播系统拟采用超五类双绞线进行部分信息传输,从中央控制室引出后套金属线槽敷设,那么至少应在()做等电位连接。
股份有限公司申请股票上市交易应具备的条件有()。
就业服务主要通过()提供。
现代计算机都是冯.诺伊曼模型的,该模型规定了计算机系统由存储器、控制器、运算器、输入设备和输出设备几大部分组成。其中,()构成了主机。
下列关于赠与合同的说法,正确的有
WhentheSpanishArmadawasdefeated,therulerofEnglandwas_____.
最新回复
(
0
)