首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(I):α1=(a11,a12,a13),α2=(a21,a22,a23),α3=(a31,a32,a33); 向量组(Ⅱ):β1=(a11,a12,a13,a14),β2=(a21,a22,a23,a24),β3=(a31,a32,a33,a34
设向量组(I):α1=(a11,a12,a13),α2=(a21,a22,a23),α3=(a31,a32,a33); 向量组(Ⅱ):β1=(a11,a12,a13,a14),β2=(a21,a22,a23,a24),β3=(a31,a32,a33,a34
admin
2017-12-12
71
问题
设向量组(I):α
1
=(a
11
,a
12
,a
13
),α
2
=(a
21
,a
22
,a
23
),α
3
=(a
31
,a
32
,a
33
);
向量组(Ⅱ):β
1
=(a
11
,a
12
,a
13
,a
14
),β
2
=(a
21
,a
22
,a
23
,a
24
),β
3
=(a
31
,a
32
,a
33
,a
34
,),
则正确的命题是( )
选项
A、(I)相关→(Ⅱ)无关.
B、(I)无关→(Ⅱ)无关.
C、(Ⅱ)无关→(I)无关.
D、(Ⅱ)相关→(I)无关.
答案
B
解析
由于A、C两个命题互为逆否命题,一个命题与它的逆否命题同真同假,而本题要求有且仅有一个命题是正确的,所以A、C均错误.如设有向量组:α
1
=(1,0,0),α
2
=(0,1,0),α
3
=(0,0,0)与β
1
=(1,0,0,0),β
2
=(0,1,0,0),β
3
=(0,0,0,1).显然r(α
1
,α
2
,α
3
)=2,r(β
1
,β
2
,β
3
)=3.即当α
1
,α
2
,α
3
线性相关时,其延伸组β
1
,β
2
,β
3
可以线性无关,因此,A、C错误.如果β
1
,β
2
,β
3
线性相关,即有不全为0的x
1
,x
2
,x
3
,使x
1
β
1
+x
2
β
2
+x
3
β
3
=0,即方程组
必有非零解,即α
1
,α
2
,α
3
线性相关.所以D错误.故选B.
转载请注明原文地址:https://www.kaotiyun.com/show/l9k4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 B
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
求微分方程y’=y(1-x)/x的通解。
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
设fˊ(x)在[a,b]上连续,且fˊ(a)>0,fˊ(b)<0,则下列结论中错误的是().
微分方程y〞一4y=x+2的通解为().
设f(x)为[0,1]上的单调增加的连续函数,证明
设动点P(x,y)在曲线9y=4x2上运动,且坐标轴的单位长是1cm.如果P点横坐标的速率是30cm/s,则当P点经过点(3,4)时,从原点到P点间距离r的变化率是_________.
设D={(x,y)|x2+y2≤1},证明不等式
(2002年)设y=y(χ)是二阶常系数微分方程y〞+py′+qy=e3χ满足初始条件y(0)=y′(0)=0的特解,则当χ→0时,函数的极限.【】
随机试题
简析方苞《狱中杂记》的主题和写作特点。
Acollegeoruniversity’sinternationalstudentofficeisagoodplace【C1】______gettingtoknowtheschoolandthecountry.Let
下列各项中,错误的是
成人,体重60kg,烧伤,于下午4时送入医院急诊室,检查:意识清,能合作,心率100次/分,血压16.0/11.2kPa(120/84mmHg),面部、胸、腹部,两前臂、两手及两小腿和足部Ⅱ、Ⅲ度烧伤,下午5时开始静脉输液,6时入手术室、清创,晚上8时送病
下列属于《施工合同条件》(新红皮书)的适用条件的是()
失业按原因不同分为()。
会计职业道德行为规范是职业道德在会计职业行为和会计职业活动中的具体体现。()
基金管理人变更基金份额登记机构的,应当在变更前将变更方案报()备案。
2015年4月1日,甲公司签订一项承担某工程建造任务的合同,该合同为固定造价合同,合同金额为8000万元。工程自2015年5月开工,预计2017年3月完工。至2016年12月31日止累计实际发生成本6800万元。甲公司签订合同时预计合同总成本为7200万元
市场经济以市场作为资源配置的基础性手段,但它并不排斥国家对经济的宏观调控。()
最新回复
(
0
)