首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f0(x)在(-∞,+∞)内连续,fn(x)=fn-1(t)dt(n=1,2,…). 证明:[*]fn(x)绝对收敛.
设函数f0(x)在(-∞,+∞)内连续,fn(x)=fn-1(t)dt(n=1,2,…). 证明:[*]fn(x)绝对收敛.
admin
2019-11-25
75
问题
设函数f
0
(x)在(-∞,+∞)内连续,f
n
(x)=
f
n-1
(t)dt(n=1,2,…).
证明:[*]f
n
(x)绝对收敛.
选项
答案
对任意的x∈(-∞,+∞),f
0
(t)在[0,x]或[x,0]上连续,于是存在M>0(M与x有关),使得|f
0
(t)|≤M(t∈[0,x]或t∈[x,0]),于是 |f
n
(x)|≤[*](x-t)
n-1
dt|=[*]|x|
n
, 因为[*]=0,所以[*]|x|
n
收敛,根据比较审敛法知[*]f
n
(x)绝对收敛.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/l6D4777K
0
考研数学三
相关试题推荐
设b>a>e,证明:ab<ba.
设且f”(x)>0.证明:f(x)≥x.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:存在ξ∈(0,3),使f’(ξ)=0.
设f(x)在x0处n阶可导,且f(m)(x0)=0(m=1,2,…,n一1),f(n)(x0)≠0(n>2).证明:当n为奇数时,(x0,f(x0))为拐点.
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导.试证:在(a,b)内至少有一点ξ,使等式=f(ξ)一ξf’(ξ)成立.
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.求证:(1)存在ξ∈(a,b),使f(ξ)+ξf’(ξ)=0;(2)存在η∈(a,b),使ηf(η)+f’(η)=0.
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
设f(x,y)为连续函数,交换累次积分∫02πdx∫0sinxf(x,y)dy的次序为先x后y成为()
微分方程(1一x2)y—xy’=0满足初值条件y(1)=1的特解是_______.
随机试题
电子计算机最早应用于()
张伟诉田华离婚一案,一审法院判决不准离婚。张伟不服提出上诉。二审法院审理后认为当事人双方感情确已破裂,应当判决离婚。二审法院采取以下何种做法是正确的()
女性,33岁,急性阑尾炎、妊高征急诊输液治疗。患者出现头痛,血压160/105mmHg,予以硫酸镁解痉治疗,患者腱反射消失,呼吸10次/分。若患者症状无缓解可以
白疕血热证的用方是白疕火毒炽盛证的用方是
球罐的焊前预热主要目的是()。
用户安全用电事故中必须报告的包括______等。()
关于成人与婴儿的言语交往,正确的说法包括()。
【《经世大典》】
试论我国法律监督的现实意义。
TheGreatestShowonEarthTheOlympicGamesarethegreatestfestivalofsportintheworld.Everyfouryears,ahundredor
最新回复
(
0
)