首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0, 在开区间(a,b)内至少存在一点ε,使得f(ξ)/g(ξ)=f"(ξ)/g"(ξ).
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0, 在开区间(a,b)内至少存在一点ε,使得f(ξ)/g(ξ)=f"(ξ)/g"(ξ).
admin
2017-08-28
53
问题
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0,
在开区间(a,b)内至少存在一点ε,使得f(ξ)/g(ξ)=f"(ξ)/g"(ξ).
选项
答案
在开区间(a,b)内至少存在一点ε,使得f(ξ)/g(ξ)=f"(ξ)/g"(ξ) 设F(x)=f(x)gˊ(x)-fˊ(x)g(x),易知 F(a)=f(a)gˊ(a)-fˊ(a)g(a)=0, F(b)=f(b)gˊ(b)-fˊ(b)g(b)=0,在[a,b]上对F(x)用罗尔定理, 必存在ε∈(a,b),使fˊ(ε)=0 Fˊ(ε)=Fˊ(x)|x=ε=[fˊ(x)gˊ(x)+f(x)g〞(x)-f〞(x)g(x)-fˊ(x)gˊ(x)]|x=ε =[f(x)g〞(x)-f〞(x)g(x)]|x=ε=f(ε)g〞(ε)-f〞(ε)g(ε)=0 又因为g(ε)≠0,g〞(ε)≠0 所以 f(ξ)/g(ξ)=f"(ξ)/g"(ξ) ε∈(a,b)
解析
转载请注明原文地址:https://www.kaotiyun.com/show/l2r4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 D
设函数f(u)具有2阶连续导数,z=f(excosy)满足=(4z+excosy)e2x.若f(0)=0,f’(0)=0,求f(u)的表达式.
[*]
-4E
(1997年试题,七)已知是矩阵的一个特征向量.问A能否相似于对角阵?说明理由.
已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_________.
设f(u,v)具有二阶连续偏导数,且满足求
确定下列函数图形的凹凸区间,并求拐点:
设x→0时ax2+bx+c—cosx是比x2高阶无穷小,其中a,b,c为常数,则()
设二维随机变量(X,Y)的分布函数为:F(x,y)=A(B+arctan)(C+arctan),-∞<x<+∞,-∞<y<+∞.求:关于X和Y的边缘密度fX(x)和fY(y).
随机试题
黑茶都可以用100℃的沸水来冲泡
关于风湿性二尖瓣狭窄和关闭不全的并发症,正确的是
产妇,26岁,孕期常规检查无异常,第二产程破膜后突然呛咳,烦躁,呼吸困难,随即昏迷,血压6.7/4kPa(50/30mmHg),休克。该产妇可能发生
慢性肾炎患者给予低蛋白低磷饮食治疗的目的是
管网式气体灭火系统有()启动方式。
在语文课上,当胡老师讲到课文中“一千万万颗恒星”一处时,刘明同学问道:“老师,‘万万’是什么意思?”全班同学觉得这个问题太简单,哄堂大笑。刘明也不好意思地低下了头,懊悔自己不该问这么简单的问题。胡老师见状,问大家:“大家都知道万万等于亿,那么,这里为什么不
在布卢姆的教育目标分类系统中,认知领域的目标分为六大类,其中最高水平的认知学习结果是()。
某教师对学生说:“我让你们干什么,你们就得干什么。”这种教师属于()。
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
Mostpeoplewouldbe(1)_____bythehighqualityofmedicine(2)_____tomostAmericans.Thereisalotofspecialization,agr
最新回复
(
0
)