首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证: (Ⅰ)在开区间(a,b)内g(x)≠0; (Ⅱ)在开区间(a,b)内至少存在一点ξ,使
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证: (Ⅰ)在开区间(a,b)内g(x)≠0; (Ⅱ)在开区间(a,b)内至少存在一点ξ,使
admin
2019-01-23
61
问题
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:
(Ⅰ)在开区间(a,b)内g(x)≠0;
(Ⅱ)在开区间(a,b)内至少存在一点ξ,使
选项
答案
(Ⅰ)利用反证法。假设存在c∈(a,b),使得g(c)=0,则对g(x)在[a,c]和[c,b]上分别应用罗尔定理,可知存在ξ
1
∈(a,c)和ξ
2
∈(c,b),使得g’(ξ
1
)=g’(ξ
2
)=0成立。 再对g’(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,可知存在ξ
1
∈(ξ
1
,ξ
2
),使得g’’(ξ
3
)=0成立,这与题设条件g’’(x)≠0矛盾,因此在开区间(a,b)内,g(x)≠0。 (Ⅱ)构造函数F(x)=f(x)g’(x)-g(x)f’(x),由题设条件得函数F(x)在区间[a,b]上是连续的,在区间(a,b)上是可导的,且满足F(a)=F(b)=0。根据罗尔定理可知,存在点ξ∈(a,b),使得F’(ξ)=0。即 f(ξ)g’’(ξ)-f’’(ξ)g(ξ)=0, 因此可得 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/kwM4777K
0
考研数学一
相关试题推荐
设X1,X2,…X10是来自正态总体X~N(0,22)的简单随机样本,求常数a,b,c,d,使Q=aX12+b(X2+X3)2+c(X4+X5+X6)2+d(X7+X8+X9+X10)2。服从χ2分布,并求自由度m.
假设批量生产的某种配件的内径X服从正态分布N(μ,σ2),今随机抽取16个配件,测得平均内径=3.05毫米,样本标准差s=0.4毫米,试求μ和σ2的90%置信区间.
设A是n阶正定矩阵,证明|A+2E|>2n.
设y=y(x)在[0,+∞)内可导,且在x>0处的增量△y=y(x+△x)一y(x)满足△y(1+△y)=,其中当△x→0时α是△x的等价无穷小,又y(0)=2,求y(x).
(n—1)x的和函数及定义域是______·
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为0.5,则μ=______.
设连接两点A(0,1),B(1,0)的一条凸弧,P(x,y)为凸弧AB上的任意点(图6.4).已知凸弧与弦AP之间的面积为x3,求此凸弧的方程.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0。试证这三条直线交于一点的充分必要条件为a+b+c=0。
随机试题
导致人体气虚的主要原因是()。
下列哪些药物具有行气作用
对于继发性高血压,下列哪项不正确()(2000年)
患者男,27岁,以左侧后牙自发痛、夜间痛为主诉就诊,检查前倾阻生,牙冠与远中牙颈部形成的间隙有较多的食物嵌塞,远中冠周轻度充血,冠周袋无脓,触痛(福),X线见远中牙颈部深龋。最恰当的应急处理
张某、王某、孙某和李某成立一个有限合伙企业。张某为有限合伙人,王某、孙某和李某是普通合伙人。2005年5月张某在其他合伙人不知情的情况下擅自与一个戊电子企业签订合同,戊电子企业相信张某为普通合伙人而与其交易。而该交易使合伙企业欠戊电子企业3万元钱。2006
设置在高层建筑一层内的燃气锅炉房,下面做法没必要的是()。
( )是指权利人依法对特定的物享有直接支配和排他的权利。( )是指用益物权人对他人所有的不动产或者动产,享有占有、使用和收益的权利。
已知某工程双代号网络计划的计划工期等于计算工期,且工作M的开始节点和完成节点均为关键节点,则该工作()。
企业不论在成本模式下,还是在公允价值模式下,投资性房地产取得的租金收入,均确认为其他业务收入。()
计算D2n=
最新回复
(
0
)