首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(I)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,如果向量组的秩分别为R(I)=R(Ⅱ)=3,R(Ⅲ)=4,求证向量组α1,α2,α3,α5一α4的秩为4.
已知向量组(I)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,如果向量组的秩分别为R(I)=R(Ⅱ)=3,R(Ⅲ)=4,求证向量组α1,α2,α3,α5一α4的秩为4.
admin
2020-09-25
50
问题
已知向量组(I)α
1
,α
2
,α
3
;(Ⅱ)α
1
,α
2
,α
3
,α
4
;(Ⅲ)α
1
,α
2
,α
3
,α
5
,如果向量组的秩分别为R(I)=R(Ⅱ)=3,R(Ⅲ)=4,求证向量组α
1
,α
2
,α
3
,α
5
一α
4
的秩为4.
选项
答案
由R(I)=R(Ⅱ)=3可知,α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,从而可得α
4
可由α
1
,α
2
,α
3
唯一线性表示,从而有一组数l
1
,l
2
,l
3
,使α
4
=l
1
α
1
+l
2
α
2
+l
3
α
3
.若有关系式x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
(α
5
一α
4
)=0,将α
4
=l
1
α
1
+l
2
α
2
+l
3
α
3
代入可得 x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
(α
5
—l
1
α
1
—l
2
α
2
一l
3
α
3
)=0, 整理可得(x
1
一l
1
x
4
)α
1
+(x
2
—l
2
x
4
)α
2
+(x
3
一l
3
x
4
)α
3
+x
4
α
5
=0. 又由于R(Ⅲ)=4,则α
1
,α
2
,α
3
,α
5
线性无关,所以有齐次线性方程组: [*] 解得:x
1
=x
2
=x
3
=x
4
=0.从而向量组α
1
,α
2
,α
3
,α
5
一α
4
线性无关. 所以R(α
1
,α
2
,α
3
,α
5
一α
4
)=4.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/kJx4777K
0
考研数学三
相关试题推荐
设A是三阶实对称矩阵,E三阶单位矩阵,若A2+A=2E,且|A|=4,则二次型xTAx的规范形为()
(15年)设随机变量X的概率密度为对X进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y为观测次数.(Ⅰ)求Y的概率分布;(Ⅱ)求EY.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
(14年)设随机变量X,Y的概率分布相同,X的概率分布为P{X=0}=,P{X=1}=,且X与Y的相关系数ρXY=.(Ⅰ)求(X,Y)的概率分布;(Ⅱ)求P{X+Y≤1}.
(1991年)试证明函数在区间(0,+∞)内单调增加.
已知随机变量X的概率密度为求随机变量Y=的数学期望E(Y).
设α1,α2,α3均为三维列向量,记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α1+4α3,α1+3α2+9α3]如果|A|=1,那么|B|=__________.
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a,试求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
[2003年]已知曲线y=x3-3ax2+b与x轴相切,则b2通过a表示为b2=__________.
若向量组α,β,γ线性无关;α,β,δ线性相关,则
随机试题
桥梁模数式伸缩装置力学性能包括()。
对于一些金额小、数量多的贷款,要采取()的办法来计提贷款损失准备金。
下面是某求助者MMPI-2的测验结果:BRMS主要用于()。
运动技能形成的第二个阶段是()。
代数式中,属于整式的有()个.
以前一直负责单位招聘工作的小王.突然临时有事。领导让你接手这个工作.但是你发现小王的工作方式有问题,向领导汇报并改正。过后小王知道了。非常生气.你怎么办?
某女生宿舍全部报名参加了考研,关于录取情况有如下几项陈述:(1)该宿舍有的女生被录取了;(2)该宿舍有的女生没有被录取;(3)并非该宿舍有的女生没有被录取;(4)该宿舍的王玲以优异的成绩被录取了。如果以上陈述中有两个是假的,则以下哪项必假?
Ifyoudon’t______smoking,you’llnevergetbetter.
YouhavejustreturnedfromatriptoFlorida.YouflewthereandbackwithOceanAir.Youdecidetowritetotheairlinetocom
I’musuallyfairlyskepticalaboutanyresearchthatconcludesthatpeopleareeitherhappierorunhappierormoreorlesscerta
最新回复
(
0
)