首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
admin
2019-01-19
98
问题
设四元齐次线性方程组(1)为
而已知另一四元齐次线性方程组(2)的一个基础解系为
α
1
=(2,一1,a+2,1)
T
,α
2
=(一1,2,4,a+8)
T
。
当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
选项
答案
设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
,β
2
=l
1
,α
1
+l
2
,α
2
,其中k
1
,k
2
与l
1
,l
2
是不全为0的常数。 由k
1
,β
1
+k
2
,β
2
一l
1
α
1
一l
2
α
2
=0,得新的齐次方程组 [*] 对新方程组的系数矩阵作初等行变换,有 [*] 当a≠一1时,方程组的系数矩阵变为[*],可知方程组只有零解,即k。 =k
2
=l
1
=l
2
=0,于是η=0,不合题意。 当a=一1时,方程组系数矩阵变为[*],解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
。于是 η=(l
1
+4l
2
)β
1
+(l
2
+7l
2
)β2=l
1
α
1
+l
2
α
2
。 所以当a=一1时,方程组(1)与(2)有非零公共解,且公共解是 l
2
(2,一1,1,1)
T
+l
2
(一1,2,4,7)
T
,l
1
,l
2
为任意常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/kBP4777K
0
考研数学三
相关试题推荐
对随机变量X,已知EekX存在(k>0为常数),证明:P{X≥ε}≤.E(ekX).(其中ε>0).
设0<a<1,区域D由χ轴,y轴,直线χ+y=a及χ+y=1所围成,且I=sin2(χ+y)dσ,J=ln3(χ+y)dσ,K=(χ+y)dσ.则【】
设随机变量X的密度为f(χ)=,-∞<χ<+∞,求E[min(1,|X|)].
设X与Y独立同分布,P(X=1)=P∈(0,1),P(X=0)=1-P,令问P取何值时,X与Z独立?(约定:0为偶数)
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T,都是A的属于特征值6的特征向量.(1)求A的另一特征值和对应的特征向量;(2)求矩阵A.
某商场销售某种型号计算机,只有10台,其中有3台次品.现已售出2台.某顾客又来到该商场购买此种型号计算机.若该顾客只买一台,求他买到正品的概率;
设线性方程组A3×4X=b有通解k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,其中k1,k2是任意常数,则下列向量中也是AX=b的解向量的是().
计算二重积分I=||x+y|一2|dσ,其中积分区域为D={(x,y)|0≤x≤2,一2≤y≤2}.
计算I=sin(x+y)|dxdy,其中积分区域D={(x,y)|0≤x≤π,0≤y≤2π}.
设有四个编号分别为1,2,3,4的盒子和三只球,现将每个球随机地放人四个盒子,记X为至少有一只球的盒子的最小号码.求X的分布律;
随机试题
Listentothepassageandcompletethenoteusingnomorethanthreewordsforeachblankaccordingtowhatyouhear.Writethe
如何定取佟某的运动区:治疗佟某的运动性失语,应取:
申请参加招标师职业水平考试的人员,在学历和从业经历方面符合规定的是()。
施工现场的安全警示标志,现场围挡等所需的费用属于()费用。
投资者张小姐持有X公司股票500股,预期该公司未来3年股利为零增长,每期股利为15元。预计从第四年开始转为正常增长,增长率为3%。目前无风险收益率为4%,市场平均股票要求收益率为12%,X公司股票的标准差为2.6531,市场组合的标准差为2.2562,两者
负责领导指令的具体下达,各业务部门和专业工作的统一协调、调度和具体指挥,属于()
“物以稀为贵”理解为:
要加快发展文化产业,形成以公有制为主体、其他所有制为补充的文化产业格局。()
A、 B、 C、 D、 D
There______afootballmatchinourschoolthisafternoon.
最新回复
(
0
)