首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
admin
2020-03-16
55
问题
设向量组α
1
,α
2
,…,α
t
是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
设kβ+k
1
(β+α
1
)+…+k
t
(β+α
t
)=0,即 (k+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0, 等式两边左乘A,得(k+k
1
+…+k
t
)Aβ=0[*]k+k
1
+…+k
t
=0,则k
1
α
1
+…+k
t
α
t
=0. 由α
1
,α
2
,…,α
t
线性无关,得k
1
=…=k
t
=0→k=0,所以β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/k7A4777K
0
考研数学二
相关试题推荐
(1992年)设函数y=y(χ)由方程y-χey=1所确定,求的值.
[2004年]曲线y=(ex+e-x)/2与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t).计算极限
[2003年]设位于第一象限的曲线y=f(x)过点(√2,1/2),其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分.求曲线y=f(x)的方程;
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.求方程组AX=0的通解.
设A是n阶矩阵,A=E+xyT,x与y都是n×1矩阵,且yTx=2,求A的特征值、特征向量.
[2013年]设Dk是圆域D={(x,y)∣x2+y2≤1)在第k象限的部分,记Ik=(y—x)dxdy(k=1,2,3,4),则().
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵A,使得QTAQ=A。
求过原点且与曲线相切的切线方程.
设χ3-3χy+y3=3确定隐函数y=y(χ),求y=y(χ)的极值.
随机试题
话剧《屈原》的作者是【】
不属于护理理论四个基本概念的是
下列出口货物完税价格确定方法中,符合关税法规定的有( )。
根据我国税收征收管理相关法律的规定,纳税担保的范围包括()。
2020年6月10日,甲公司向乙公司购买一批商品,向乙公司开出一张100万元的商业汇票以支付货款,出票人为甲公司,付款人为丙公司,汇票上有丁、戊两公司的保证签章,其中丁公司保证80万元,戊公司保证20万元,同时在票据上记载“保证人只承担一般保证责任”。由于
在空间坐标系的原点处,有一单位正电荷,设另一单位负电荷在椭圆z=x2+y2,x+y+z=1上移动,问两电荷间的引力何时最大,何时最小?
选取“人员情况表”的“学历”和“所占比例”两列的内容(合计行内容除外)建立“三维饼图”,标题为“人员情况图",图例位置靠上,数据标志为显示百分比,将图插入到工作表的A9:D20单元格区域内。
MyLifeatRendaIlearnedveryquicklythatbeingateachingassistant(TA)attheUniversityofIowa wouldbedifferentf
Scienceisawayofthinkingmuchmorethanitisabodyofknowledge.Itsgoalistofindouthowtheworldworks,toseekwhat
Thehistoryofcivilengineeringisaveryimportantstoryinthedevelopmentofcivilization.Civilengineersbeganpracticing
最新回复
(
0
)