首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
admin
2020-03-16
67
问题
设向量组α
1
,α
2
,…,α
t
是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
设kβ+k
1
(β+α
1
)+…+k
t
(β+α
t
)=0,即 (k+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0, 等式两边左乘A,得(k+k
1
+…+k
t
)Aβ=0[*]k+k
1
+…+k
t
=0,则k
1
α
1
+…+k
t
α
t
=0. 由α
1
,α
2
,…,α
t
线性无关,得k
1
=…=k
t
=0→k=0,所以β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/k7A4777K
0
考研数学二
相关试题推荐
[2014年]设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:0≤∫axg(t)dt≤x一a,x∈[a,b];
[2003年]有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(见图1.3.5.10),容器的底面圆的半径为2m.根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设
(2010年试题,19)设函数u=f(x,y)具有二阶连续偏导数,且满足等式确定a,b的值,使等式在变换ξ=x+ay,η=x+by下化简为
(2000年试题,十一)函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式(1)求导数f’(x);(2)证明:当x≥0时,成立不等式:e-sf(x)≤1.
(2006年)设数列{χn}满足0<χ1<π,χn+1=sinχn(n=1,2,…).(Ⅰ)证明χn存在,并求该极限;(Ⅱ)
设有矩阵Am×n,Bn×m,Em+AB可逆,(1)验证:Em+BA也可逆,且(En+BA)一1=Em—B(Em+AB)一1A;(2)设
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.求方程组AX=0的通解.
设F(χ)=,试求:(Ⅰ)F(χ)的极值;(Ⅱ)曲线y=F(χ)的拐点的横坐标;(Ⅲ)∫-23χ2F′(χ)dχ.
将极坐标变换后的二重积分f(rcosθ,rsinθ)rdrdθ的如下累次积分交换积分顺序:I=(r,θ)dr,其中F(r,θ)=fFcosθ,rsinθ)r.
求下列不定积分:
随机试题
下列毒性中药中哪些为二类毒性中药
赵某,女性,48岁,某天觉得肚子疼,去医院检查之后,被告知是急性阑尾炎。医生决定动手术切除,在经患者同意之后,马上进行了手术。但是,在手术中医生发现其肾有严重囊肿,需立刻切除以挽救其生命,于是医生在患者不知情的情况下做了手术。请问医生侵犯了患者的什么权利?
某研究所拥有以下科研成果,可以申请专利的有哪些?()。
在流沙段开挖隧道,可采用的治理措施有()。[2010年真题]
吸收一定比例的负债资金,可能产生的结果有()。
雾霾是对大气中各种悬浮颗粒物含量超标的笼统表述。PM2.5(空气动力学当量直径小于等于2.5微米的颗粒物)被认为是造成雾霾天气的“元凶”。下图为2017年1月某时刻亚洲局部地区海平面等压线(单位:百帕)分布示意图。读图完成3~4题。该日上海出现雾霾天
如图,矩形ABCD的顶点A在第-象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合,在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()
“哪怕”在复句中表示()关系。
分布式数据库的【13】透明性是最高级别的透明性,它使得在编写程序时用户只需要对全局关系进行操作,这样简化了应用程序的维护。
Thispartistotestyourabilitytodopracticalwriting.YouarerequiredtocompleteaLetterofInquiryandaLetterofRepl
最新回复
(
0
)