首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(Ⅰ)α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中 求方程组(Ⅱ)BX=0的基础解系。
设(Ⅰ)α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中 求方程组(Ⅱ)BX=0的基础解系。
admin
2021-11-25
51
问题
设(Ⅰ)
α
1
,α
2
,α
3
,α
4
为四元非齐次线性方程组BX=b的四个解,其中
求方程组(Ⅱ)BX=0的基础解系。
选项
答案
因为r(B)=2,所以方程组(Ⅱ)的基础解系含有两个线性无关的解向量 α
4
-α
1
=[*],α
2
+α
3
-2α
1
=[*]为方程组(Ⅱ)的基础解系。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/jpy4777K
0
考研数学二
相关试题推荐
设4维向量组a1=(1+a,1,1,1)T,a2=(2,2+a,2,2)T,a3=(3,3,3+a,3)T,a4=(4,4,4,4+a)T,问a为何值时,a1,a2,a3,a4线性相关?当a1,a2,a3,a4线性相关时,求其一个极大线性无关组,并将其
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T问:(I)a,b取何值时,β不能由α1,α2,α3线性表示?(Ⅱ)a,b取何值时,β可由α1,α2,α3线性表示?并写出此表示式.
设A为m×n矩阵,对于齐次线性方程组(Ⅰ)Aχ=0和(Ⅱ)ATAχ=0,必有()
设向量组,α1,α2……αr是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解.证明:向量组β,β+α1,β+α2,…,β+αr线性无关.
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,-4,0)T,则方程组A*X=0的基础解系为().
已知n维向量组α1,α2,…,αs线性无关,则n维向量组β1,β2,…,βs也线性无关的充分必要条件为
随机试题
下列各项,对左心衰竭没有诊断意义的是()
根据《城市绿化条例》的规定,下列关于城市绿化的建设要求表述中不符合规定的是()。
关于挖孔桩基础施工安全控制要点的说法,正确的是()。
在个人住房贷款中,保证担保的法律风险主要表现在()。
多栏式明细账一般适用于()。
中国是世界“文化自然双重遗产”的鼻祖,且拥有双遗产总数与意大利并列全球第一位,跟()同为4项。
某国科研人员利用蜗牛进行实验,发现一氧化氮在蜗牛的学习记忆活动中扮演了不可或缺的角色,具有“两面派”特征——既促进学习,又推动忘却。科研人员认为,正是一氧化氮的这种特点使人们“该学的学得会,该忘的忘得了”。根据上述论述,下列各项能够削弱科研人员的观点的是:
根据我国法律的有关规定,合伙企业被依法宣告破产的,则普通合伙人对合伙企业所欠债务()。
直立人大约于200万年前起源于非洲,并且扩散到了欧亚大陆;现代人约在20万年前出现。这两种人类的化石在中国均有分布。比如北京周口店古老地层出土的“北京人”属于直立人;年轻地层中的“山顶洞人”属于现代人。对中国当代人群的研究发现,父系遗传的Y染色体均源自非洲
Suddenly,theeconomicsofAmericansuburbanlifeareunderassaultasskyrocketingenergypricesinflatethecostsofreaching,
最新回复
(
0
)