首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=(a1x1+a2x2+a3x3)(b1x1+b2x2+b3x3)的矩阵为__________。
二次型f(x1,x2,x3)=(a1x1+a2x2+a3x3)(b1x1+b2x2+b3x3)的矩阵为__________。
admin
2019-01-23
75
问题
二次型f(x
1
,x
2
,x
3
)=(a
1
x
1
+a
2
x
2
+a
3
x
3
)(b
1
x
1
+b
2
x
2
+b
3
x
3
)的矩阵为__________。
选项
答案
[*]
解析
f(α
3
x
3
)=(α
1
x
1
+α
2
x
2
+α
3
x
3
)(b
1
x
1
+b
2
x
2
+b
3
x
3
)
=(x
1
,x
2
,x
3
)
(b
1
,b
2
,b
3
)
=(x
1
,x
2
,x
3
)
=(x
1
,x
2
,x
3
)
所以原二次型矩阵为
。
转载请注明原文地址:https://www.kaotiyun.com/show/jmP4777K
0
考研数学三
相关试题推荐
设A是m×n矩阵,对矩阵A作初等行变换得到矩阵B,证明:矩阵A的列向量与矩阵B相应的列向量有相同的线性相关性.
设A是n阶反对称矩阵.(1)证明:对任何n维列向量α,恒有αTAα=0.(2)证明:对任何非零常数c,矩阵A+cE恒可逆.
已知矩阵A=与对角矩阵相似,求An.
已知3维列向量β不能由α1=能否相似对角化?若能则求出可逆矩阵P使P—1AP=A.若不能则说明理由。
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(一1,一1,1,a)T,α3=(2,a,一3,一5)T,α4=(1,一1,a,5)T与齐次方程组Ax=0的基础解系等价,求Ax=0的
设实矩阵A=(aij)n×n的秩为n一1,αi为A的第i个行向量(i=1,2,…,n).求一个非零向量x∈Rn,使x与α1,α2,…,αn均正交.
假设某射手的命中率为p(0<p<1),他一次一次地对同一目标独立地射击直到恰好两次命中目标为止,以X表示首次命中已射击的次数,以Y表示射击的总次数,试求:(1)随机变量X和Y的联合概率分布;(2)随机变量Y关于X的条件概率分布;
设f(x)=xTAx为一n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
二次型4x22一3x32+2ax1x2—4x1x3+8x2x3经正交变换化为标准形y12+6y22+by32,则a=__________.
设f(x1,x2)=,则二次型的对应矩阵是________。
随机试题
诊断肺心病的主要形态标准是:
胰头癌区别于其他壶腹周围癌的常见特点是
尿中可以把糖测定出来时的最低血糖浓度为
A、百合固金丸B、止咳平喘糖浆C、咳喘宁糖浆D、固本咳喘片E、蛤蚧定喘胶囊可用于肺肾两虚,阴虚肺热所致的虚劳久咳,年老咳喘的非处方中成药的是
帧中继业务将不同长度的用户数据封装在一个较大的帧内,加上寻址和校验信息,其传输速度可达()。
以下关于个人贷款业务的说法中,错误的是()
每股股利它可以反映公司的盈利能力的大小,每股股利越低,说明公司的盈利能力越弱。()
根据《宪法》与《国有土地上房屋征收与补偿条例》,可以作为征收理由的“公共利益”有()。
Chooseoneappropriatewordfromthefollowingwordbanktofillintheblanknumberedfrom91to105inthepassagebelow.Chan
DearSir,IwillgraduatefromShanghaiUniversityofInternationalBusinessandEconomicsthisyear.Asastudentmajoring
最新回复
(
0
)