首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
20n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
20n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
admin
2017-12-31
53
问题
20n维列向量组α
1
,…,α
n-1
线性无关,且与非零向量β正交.证明:α
1
,…,α
n-1
,β线性无关.
选项
答案
令k
0
β+k
1
α
1
+…+k
n-1
α
n-1
=0,由α
1
,…,α
n-1
与非零向量β正交 及(β,k
0
β,k
1
α
1
+…+k
n-1
α
n-1
)=0得k
0
(β,β)=0,因为β为非零向量,所以(β,β)=‖β‖>0,于是k
0
=0,故k
1
α
1
+…+k
n-1
α
n-1
=0,由α
1
,…,α
n-1
线性无关得k
1
=…k
n-1
=0,于是α
1
,…,α
n-1
,β线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/iPX4777K
0
考研数学三
相关试题推荐
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)(4)F(x)=f(x,y0)在点x0处可微,G(y)=f
设矩阵且秩(A)=3,则k_______.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解。(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A;(Ⅲ)求A及,其中E为3阶单位矩阵。
设A为n阶非零方阵,且存在某正整数m,使Am=0.求A的特征值并证明A不与对角矩阵相似。
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2.求a的值;
一生产线生产的产品成箱包装,每箱的重量是随机的。假设每箱平均重50千克,标准差为5千克。若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977(Ф(2)一0.977,其中Ф(x)是标准正态分布函数。
随机变量X一N(0,1),Y~N(1,4),且相关系数ρXY=1,则()
如图由y=0,x=8,y=x2围成一曲边三角形OAB,在曲边上求一点,使得过此点所作y=x2的切线与OA、AB所围成的三角形面积为最大.
已知函数f(u,v)具有二阶连续偏导数,f(1,1)=2是f(u,v)的极值,z=f(x+y,f(x,y)求
设f(x)∈С[-π,π],且f(x)=+∫-ππf(x)sinxdx,求f(x).
随机试题
有关脑动静脉畸形的CT表现的描述错误的是
国家标准《食用盐》中规定,食用盐中亚铁氰化钾的最大使用量为1mg/kg。
下述哪种检查对弥漫性风湿病的早期诊断至关重要
垃圾填埋场与环境保护密切相关的因素有()。
建筑业企业申请晋升资质等级或者主项资质以外的资质,在申请之日前一年内有()的,建设行政主管部门不予批准。
旅游业对目的地的消极影响包括()。
下图所反映的罗斯福新政的措施是()。
素数是指只含有两个因子的自然数(即只能被自身和1整除)。孪生素数,是指两个相差为2的素数。比如,3和5,17和19等。所谓的孪生素数猜想,是由希腊数学家欧几里得提出的,意思是存在着无穷对孪生素数。该论题一直未得到证明。近期,美国一位华人讲师的最新研究表明,
诚实守信在我国思想道德建设中具有特殊重要的作用。诚实和守信是统一的。诚实守信()
SpeechforVisitorstotheMuseum1.Historyofthemuseum.Waterandavailabilityofrawmaterial—madethesitesuita
最新回复
(
0
)