首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶实矩阵A为反对称矩阵,即AT=-A.证明: A+E与A-E都可逆;
设n阶实矩阵A为反对称矩阵,即AT=-A.证明: A+E与A-E都可逆;
admin
2021-02-25
53
问题
设n阶实矩阵A为反对称矩阵,即A
T
=-A.证明:
A+E与A-E都可逆;
选项
答案
反证法.设A-E不可逆,则存在非零列向量α,使(A-E)α=0,即Aα=α,这与α,Aα正交矛盾,故A-E可逆,同理可证A+E可逆.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/hZ84777K
0
考研数学二
相关试题推荐
已知三角形周长为2p,求出这样一个三角形,使它绕自己的一边旋转时体积最大.
设z=f(2x一y)+g(x,xy),其中函数f(t)二阶可导,g(u,υ)具有连续二阶偏导数,求
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表不;(2)设α1=,α2=,β1=,β2=,求出可由两组向量同时线性表示的向量.
下列矩阵中两两相似的是
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=()
设f(x)在[a,b]上有二阶导数,且f’(x)>0.(Ⅰ)证明至少存在一点ξ∈(a,b),使∫abf(x)dx=f(b)(ξ一a)+f(a)(b—ξ);(Ⅱ)对(Ⅰ)中的ξ∈(a,6),求.
依题意,如右图所示,D为右半单位圆,且关于x轴[*]
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
[2002年]已知A,B为三阶矩阵,且满足2A-1B=B一4E,其中E是三阶单位矩阵.(1)证明矩阵A一2E可逆;(2)若B=,求矩阵A.
随机试题
冲突产生的根源有哪些?
x=一0.1001010X2-111,y=+0.0011101X2-100,写出x和y的规格化浮点表示,计算(x)补+(y)补。
全面依法治国的重点是()
目前喉癌的治疗多主张
游离皮片移植失败的常见原因是
在索赔通知书发出后的()天内,承包人向工程师提交索赔报告。
仲由问孔子:“听了就去干吗?”孔子答:“不能。”冉求也问孔子:“听了就去干吗?”孔子答:“干吧。”公西华问孔子:“为什么同一个问题回答不一样?”孔子说:“冉求很畏缩,我要鼓励他;仲由好勇过人,我要约束他。”这个故事说明的哲学道理是()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
设f(x)在[0,1]上连续可导,f(1)=0,∫x1xf’(x)dx=2,证明:存在ζ∈[0,1],使得f’(ζ)=4。
Howlongdoesittakefromheretoyourhomeonfoot?
最新回复
(
0
)