首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(Ⅰ): β1=(0,1,-1)T,β2(a,2,1)T,β3=(b,1,0)T 与向量组.(Ⅱ): α1=(1,2,-3)T,α2=(3,0,1)T,α3=(9,6,-7)T 具有相同的秩,且β3可由向量组(Ⅱ)线性表示,求a、b的值.
已知向量组(Ⅰ): β1=(0,1,-1)T,β2(a,2,1)T,β3=(b,1,0)T 与向量组.(Ⅱ): α1=(1,2,-3)T,α2=(3,0,1)T,α3=(9,6,-7)T 具有相同的秩,且β3可由向量组(Ⅱ)线性表示,求a、b的值.
admin
2018-07-27
58
问题
已知向量组(Ⅰ):
β
1
=(0,1,-1)
T
,β
2
(a,2,1)
T
,β
3
=(b,1,0)
T
与向量组.(Ⅱ):
α
1
=(1,2,-3)
T
,α
2
=(3,0,1)
T
,α
3
=(9,6,-7)
T
具有相同的秩,且β
3
可由向量组(Ⅱ)线性表示,求a、b的值.
选项
答案
α
1
,α
2
是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.故(Ⅰ)线性相关,从而行列式|β
1
,β
2
,β
3
|=0,由此解得a=3b.又β
3
可由(Ⅱ)线性表示,从而β
3
可由α
1
,α
2
线性表示,所以向量组α
1
,α
2
,β
3
线性相关,于是,行列式|α
1
α
2
β
3
|=0,解之得b=5,所以a=15,b=5.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/hXW4777K
0
考研数学三
相关试题推荐
设A是n阶反对称矩阵,证明(E-A)(E+A)-1是正交矩阵.
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
设f(x)=试确定常数a,使f(x)在x=0处右连续.
确定常数a,b,c的值,使
求下列二阶常系数齐次线性微分方程的通解:(Ⅰ)2y’’+y’-y=0;(Ⅱ)y’’+8y’+16y=0;(Ⅲ)y’’-2y’+3y=0.
设某商品的需求量D和供给量S各自对价格P的函数为D(P)=,S(P)=bP,且P是时间t的函数,并满足方程=k[D(P)-S(P)],其中a,b,k为正的常数.求:(Ⅰ)需求量与供给量相等时的均衡价格Pe;(Ⅱ)当t=0,P=1时的价格函数P(t);
若α1=(1,0,5,2)T,α2=(3,-2,3,-4)T,α3=(-1,1,t,3)T线性相关,则t=______.
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3),如果|A|=1,那么|B|=______.
设D是位于曲线下方,x轴上方的无界区域.(Ⅰ)求区域D绕x轴旋转一周所成旋转体的体积V(a);(Ⅱ)当a为何值时,V(a)最小?并求此最小值.
由曲线y=lnx与两直线y=e+1-x及y=0围成平面图形的面积S=______.
随机试题
简述新闻通讯事业诞生的历史背景。
男性,43岁,在烈日下工作3h,出现高热,体温达40℃,颜面潮红,皮肤干燥、无汗、神志模糊。该病人的诊断是()
小儿急性感染性喉炎特征是
不动产权证书的集成版证书记载同一权利人在()享有的多个不动产单元的不动产权利。
中国古代园林的特色是()。
《中华人民共和国民法通则》第139条规定:“在诉讼时效期间的最后6个月内,因不可抗力或者其他障碍不能行使请求权的,诉讼时效中止。从中止时效的原因消除之日起,诉讼时效期间继续计算。”试分析该条法律规定。
他买了(liǎng)个手机。
A、Byhavingteststocheckstudents’learning.B、Bysettingtasksforstudentstocomplete.C、Byaskingquestionstoletstudent
Thisarticlemainlytalkedabout______.Whichanimalhasreturnedtooceananddevelopedintothelargestofallanimalforms?
Celebrity’sPrivacy1.人们对名人的隐私很感兴趣2.有些人认为名人也应该有隐私3.我的看法
最新回复
(
0
)