首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列说法不正确的是( )
下列说法不正确的是( )
admin
2019-01-14
62
问题
下列说法不正确的是( )
选项
A、s个n维向量α
1
,α
2
,…,α
s
线性无关,则加入k个n维向量β
1
,β
2
,…,β
k
后的向量组仍然线性无关.
B、5个n维向量α
1
,α
2
,…,α
s
线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关.
C、s个n维向量α
1
,α
2
,…,α
s
线性相关,则加入k个n维向量β
1
,β
2
,…,β
k
后得到的向量组仍然线性相关.
D、s个n维向量α
1
,α
2
,…,α
s
线性无关,则减少一个向量后得到的向量组仍然线性无关.
答案
A
解析
A不正确,因为如果s+k>n,由n+1个行维向量组线性相关则增加向量个数后的向量组相关.
选项A是根据一个向量组中向量个数和维数的关系确定向量组的线性相关性.
选项B说的是向量组中高维向量组和低维向量组的线性相关性:即若低维向量组线性无关,则由低维向量组增加维数后的高维向量组也无关.
选项C将α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
s
看成一个向量组,α
1
,α
2
,…,α
s
是其中的部分向量组,说明一个向量组部分向量相关,则整体向量组也相关.
选项D说明一个向量组整体无关,则这个向量组的部分向量组也无关,所以正确.
转载请注明原文地址:https://www.kaotiyun.com/show/hVM4777K
0
考研数学一
相关试题推荐
设y=y(x)由方程组确定,求
设f(x)在[0,1]上连续,且满足∫01f(x)dx=0,∫01xf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
设曲线积分2[xφ(y)+ψ(y)]dx+[x2ψ(y)+2xy2一2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数.(I)若φ(0)=一2,ψ(0)=1,试确定函数φ(y)与ψ(y);(Ⅱ
求曲线积分I=∫L(y2+z2)dx+(z2+x2)dy+(x2+y2)dz,其中L是球面x2+y2+z2=2bx与柱面x2+y2=2ax(b>a>0)的交线(z≥0).L的方向规定为沿L的方向运动时,从z轴正向往下看,曲线L所围球面部分总在左边(如图10
n维向量α=(a,0,...,0,a)T,a<0,A=E一ααT,A-1=E+a-1ααT,求a.
设f(x)在[a,b]上有二阶连续导数,求证:∫abf(x)dx=(b一a)[f(a)+f(b)]+∫abf"(x)(x一a)(x一b)dx.
下列函数中是某一随机变量的分布函数的是
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数为p的0—1分布.令求随机变量(X1,X2)的联合概率分布.
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T都是齐次线性方程组AX=0的解.(1)求A的特征值和特征向量.(2)求作正交矩阵Q和对角矩阵A,使得QTAQ=A.(3)
设f(x)是区间[一π,π]上的偶函数,且满足.证明:f(x)在[一π,π]上的傅里叶级数展开式中系数a2n=0,n=1,2,….
随机试题
PleasereadthefollowingarticleinChinesecarefully,andthenwriteasummaryof200wordsinEnglishontheANSWERSHEET.Ma
钢筋的连接方法包括()。
专家判断法,是由专家根据他们的经验和判断能力对特定产品的未来销售量进行判断和预测的方法,主要包括()。
每个人都可能犯错误,你能谈一下自己在学习(或工作)中所犯的错误和遭受的失败吗?
下列有关我国宪法修正案的说法,错误的是()。
【普奥战争】浙江大学2001年世界近代史真题
直接从邮件将发件人添加到通讯薄。
请打开考生文件夹下的解决方案文件proj3,其中声明的是一个人员信息类,补充编制程序,使其功能完整。在main函数中给出了一组测试数据,此种情况下程序的输出应该是:Zhang20Tsinghtin。注意:只能在函数address_change
下列关于算法的描述中错误的是
【B1】【B17】
最新回复
(
0
)