首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线积分2[xφ(y)+ψ(y)]dx+[x2ψ(y)+2xy2一2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数. (I)若φ(0)=一2,ψ(0)=1,试确定函数φ(y)与ψ(y); (Ⅱ
设曲线积分2[xφ(y)+ψ(y)]dx+[x2ψ(y)+2xy2一2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数. (I)若φ(0)=一2,ψ(0)=1,试确定函数φ(y)与ψ(y); (Ⅱ
admin
2017-07-28
60
问题
设曲线积分
2[xφ(y)+ψ(y)]dx+[x
2
ψ(y)+2xy
2
一2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数.
(I)若φ(0)=一2,ψ(0)=1,试确定函数φ(y)与ψ(y);
(Ⅱ)计算沿L从点O(0,0)到M
的曲线积分.
选项
答案
(I)由假设条件,该曲线积分与路径无关,将曲线积分记为[*].由单连通区域上曲线积分与路径无关的充要条件知,φ(y),ψ(y)满足[*],即 2[xφ’(y)+ψ’(y)]=2xψ(y)+2y
2
一2φ(y). 由此得 x[φ’(y)一ψ(y)]=y
2
一φ(y)一ψ’(y). 由于x,y是独立变量,若令x=0,则y
2
一φ(y)一ψ’(y)=0.将之代回上式又得 φ’(y)一ψ(y)=0. [*] 将第一个方程ψ(y)=φ’(y)代入第二个方程得φ”(y)+φ(y)=y
2
.这是二阶线性常系数非齐次方程,它的通解是φ(y)=c
1
cosy+c
2
siny+y
2
—2.由条件φ(0)=一2,φ’(0)=ψ(0)=1,得c
1
=0,c
2
=1,于是求得φ(y)=siny+y
2
一2,ψ(y)=φ’(y)=cosy+2y. (Ⅱ)求u使得du=Pdx+Qdy.把φ,ψ的关系式代入并整理得 Pdx+Qdy=φ(y)dx
2
+x
2
dφ(y)+ψ(y)d(2x)+2x[y
2
—φ(y)]dy =d[x
2
φ(y)]+ψ(y)d(2x)+2xdψ(y) =d[x
2
φ(y)+2xψ(y)]. [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/zKu4777K
0
考研数学一
相关试题推荐
设f(x)的导数在x=a处连续,,则().
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S恒等于线段P1P2的
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0必有()
如下图,连续函数y=f(x)在区间[-3,-2]、[2,3]上图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的上、下半圆周,设F(x)=∫0xf(t)dt,则下列结论正确的是().
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(Ⅰ)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.讨论F(t)在区间(0,+∞)内的单调性;
设f’(1)=a,则数列极限=___________.
已知二次曲面X2+4y2+3z2+2axy+2xz+2(a一2)yz=1是椭球面,则a的取值为____________.
当x→0+时,下列无穷小中,阶数最高的是().
求Pdx+Qdy在指定区域D上的原函数,其中{P,Q}={1-},D={(x,y)|x>0}.
随机试题
关于奥利司他的说法,错误的是
关于胃肠内在神经丛的叙述,正确的是
A.γ-GT1B.γ-GT2C.γ-GT3D.γ-GT4E.LD胰腺炎时()增加
朱砂安神丸的作用是
乳剂不稳定原因有()
【真题(中级)】某公司向银行借款500万元,年利率8%,银行要求维持贷款限额10%的补偿性余额,则该项借款的实际利率是()。
政府预算的原则随社会经济的发展而不断变化,在预算制度发展的各个阶段重点强调的预算原则包括()。
根据增值税法律制度的规定,下列关于增值税一般纳税人和小规模纳税人的有关说法正确的有()。
根据以下资料.回答问题。2012年,中国内地对中国香港和中国台湾货物出口额之和占货物出口总额的比重约为()。
小学生解决类似“三分之一加四分之三等于几”这样的问题所需要的知识在心理学上称为()
最新回复
(
0
)