首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
admin
2020-03-16
89
问题
设η
1
,η
2
,η
3
为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η
1
,η
2
,η
3
线性表示,并且r(A)=n-3,证明η
1
,η
2
,η
3
为AX=0的一个基础解系.
选项
答案
因为r(A)=n-3,所以AX=0的基础解系包含3个解.设γ
1
,γ
2
,γ
3
是AX=0的一个基础解系,则条件说明γ
1
,γ
2
,γ
3
可以用η
1
,η
2
,η
3
线性表示.于是有下面的关于秩的关系式: 3=r(γ
1
,γ
2
,γ
3
)≤r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
)≤3, 从而r(γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
), 这说明η
1
,η
2
,η
3
和γ
1
,γ
2
,γ
3
等价,从而η
1
,η
2
,η
3
也都是AX=0的解;又r(η
1
,η
2
,η
3
)=3,即η
1
,η
2
,η
3
线性无关,因此是AX=0的一个基础解系.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/hOA4777K
0
考研数学二
相关试题推荐
当x→1时,函数的极限().
[2016年]设D是由曲线y=(0≤x≤1)与围成的平面区域,求D绕x轴旋转一周所得旋转体的体积和表面积.
[2007年]已知函数f(u)具有二阶导数,且f'(0)=l,函数y=y(x)由方程y一xey-1=1所确定.设z=f(lny—sinx),求.
[2011年]设函数F(x,y)=∫0xydt,则=__________.
(1996年)设f(χ)为连续函数.(1)求初值问题的解y(χ),其中a是正常数;(2)若|f(χ)|≤k(k为常数),证明:当χ≥0时,有|y(χ)|≤(1-e-aχ)
设A=E为3阶单位矩阵.(Ⅰ)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
设A是n阶矩阵,A=E+xyT,x与y都是n×1矩阵,且yTx=2,求A的特征值、特征向量.
求方程y(4)一y"=0的一个特解,使其在x→0时与x3为等价无穷小.
设y(x)是初值问题的解,则∫0+∞xyˊ(x)dx=()
已知函数f(x)在区间[0,2]上可积,且满足f(x)=6x2—2x∫02f(x)dx+3∫01f(x)dx,则函数f(x)的解析式是
随机试题
FiveProblemsFinancialReformDoesn’tFixA)Thelegislationconcerningfinancialreformfocusesonhelpingregulatorsdete
溢水堰模型试验,实际流量为Qn=537m3/s,若在模型上测得流量Qn=300L/s,则该模型长度比尺为()。
在邀请招标的程序中( )。
感应电炉的缺点是()。
ABC会计师事务所承接了戊公司20×4年度财务报表审计业务。项目负责人是C注册会计师,其妻子是戊公司财务负责人。在制定审计计划时,C注册会计师认为对戊公司非常熟悉,无须再了解戊公司及其环境,应将审计资源放在对认定层次实施实质性程序上。审计进程中,项目组成员
垒球的握法是()。
下列图形中,符合所给图形的变化规律的是:
下列各句中,加点成语使用恰当的一句定______。
MIT
下列SQL查询语句中,与下面查询设计视图所示的查询结果等价的是()。
最新回复
(
0
)