首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 已知函数f(x,y)满足=2(y+1),且f(y,y)=(y+1)2一(2一y)lny,求曲线f(x,y)=0所围图形绕直线y=一1旋转所成旋转体的体积.
[2014年] 已知函数f(x,y)满足=2(y+1),且f(y,y)=(y+1)2一(2一y)lny,求曲线f(x,y)=0所围图形绕直线y=一1旋转所成旋转体的体积.
admin
2019-04-05
98
问题
[2014年] 已知函数f(x,y)满足
=2(y+1),且f(y,y)=(y+1)
2
一(2一y)lny,求曲线f(x,y)=0所围图形绕直线y=一1旋转所成旋转体的体积.
选项
答案
按平面图形绕平行于坐标轴y=一1的直线旋转所得的体积公式(1.3.5.8): V=π∫
1
2
[y一(一1)]dx求之,为此需先求出(y+1)
2
的表达式. 在[*]=2(y+1)两边对y积分得到f(x,y)=y
2
+2y+c(x).又由题设有 f(y,y)=(y+1)
2
-(2一y)lny,因而(y+1)
2
一(2一y)lny=y
2
+2y+c(y). 则C(y)=1一(2一y)[ny,于是C(x)=1一(2一x)lnx,因而 f(x,y)=y
2
+2y+1一(2-x)lnx=(y+1)
2
一(2-x)lnx. 曲线f(x,y)=0即(y+1)
2
=(2一x)lnx,注意到(y+1)
2
≥0,有x∈[1,2].于是所求的旋转体体积为 V=∫
1
2
π(y+1)
2
dx=π∫
1
2
(2一x)lnxdx=π∫
1
2
2lnxdx一[*]∫
1
2
lnxdx
2
=2π(xlnx∣
1
2
·∫
1
2
x·[*]dx)—[*](x
2
lnx∣
1
2
—∫
1
2
x
2
·[*]dx) =2π(2ln2—1)一[*].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/AWV4777K
0
考研数学二
相关试题推荐
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[一2,2]上的表达式;
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在η∈(0,2),使f(n)=f(0);
计算,其中D为曲线y=lnx与两直线y=0,y=(e+1)-x所围成的平面区域.
证明
用变量代换x=cost(0<t<π)化简微分方程(1一x2)y’’一xy’+y=0,并求其满足y|x=0=1,y’|x=0=2的特解.
某企业的收益函数为R(Q)=40Q-4Q2,总成本函数C(Q)=2Q2+4Q+10,如果政府对该企业征收产品税T=Qt,其中t为税率,求(1)税收最大时的税率;(2)企业纳税后的最大利润.
(2018年)设A,B为n阶矩阵,记r(X)为矩阵X的秩,(XY)表示分块矩阵,则
[2012年]设函数f(x,y)为可微函数,且对任意的x,y都有>0,<0,则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是().
[2011年]函数f(x)=ln∣(x一1)(x一2)(x一3)∣的驻点个数为().
随机试题
已知一棵树的结点表示如下,其中各兄弟结点是依次出现的,画出对应的二叉树。
放射性过敏原吸附试验有助于诊断
在建设工程施工招标阶段,监理单位目标控制的任务有( )。
教师选择教学方法的主要依据有()。
改革开放以来,某省从业人员总量伴随经济增长而持续增加,城乡就业规模不断扩大,就业结构经过调整逐步合理,从业人员素质逐步提高,城镇登记失业率稳中有降,成功地解决了经济结构调整以及城市化进程中的就业问题。至2007年底,某省从业人员总量达到2015.33万人,
书店是一个城市的文化地标,但是也有很多书店倒闭的例子。请举两个书店倒闭的例子,并分析这一现象。
Peopleofdiversebackgroundsnowflytodistantplacesforpleasure,businessoreducation.
废两改元(华东师范大学2006年中国近现代史真题)
Then,whydoAmericanswanttoworkharder?OnereasonmaybethattherealearningsofmanyAmericanshavebeenstagnantorfa
A、Mothermadeit.B、Withfruit.C、Boughtitinashop.D、Delicious!DWhatdoyouthinkofthebirthdaycake?
最新回复
(
0
)