首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn—1是Rn中线性无关的向量组,β1,β2与α1,α2,…,αn—1正交,则( )
设α1,α2,…,αn—1是Rn中线性无关的向量组,β1,β2与α1,α2,…,αn—1正交,则( )
admin
2020-03-01
62
问题
设α
1
,α
2
,…,α
n—1
是R
n
中线性无关的向量组,β
1
,β
2
与α
1
,α
2
,…,α
n—1
正交,则( )
选项
A、α
1
,α
2
,…,α
n—1
,β
1
必线性相关。
B、α
1
,α
2
,…,α
n—1
,β
1
,β
2
必线性无关。
C、β
1
,β
2
必线性相关。
D、β
1
,β
2
必线性无关。
答案
C
解析
由n+1个n维向量必线性相关可知B选项错;
若α
i
(i=1,2,…,n—1)是第i个分量为1,其余分量全为0的向量,β
1
是第n个分量为1,其余分量全为0的向量,β
2
是第n个分量为2,其余分量全为0的向量,则α
1
,α
2
,…,α
n—1
,β
1
线性无关,β
2
=2β
1
,所以A和D两项错误。由排除法,故选C。
下证C选项正确:
因α
1
,α
2
,…,α
n—1
,β
1
,β
2
必线性相关,所以存在n+1个不全为零的数k
1
,k
2
,…,k
n—1
,l
1
,l
2
,使
k
1
α
1
+k
2
α
1
+ … +k
n—1
α
n—1
+l
1
β
1
+l
2
β
1
=0,
又因为α
1
,α
2
,…,α
n—1
线性无关,所以l
1
,l
2
一定不全为零,否则α
1
,α
2
,…,α
n—1
线性相关,产生矛盾。
在上式两端分别与β
1
,β
2
作内积,有
(l
1
β
1
+l
2
β
2
,β
1
)=0, (1)
(l
1
β
1
+l
2
β
2
,β
2
)=0, (2)
联立两式,l
1
×(1)+l
2
×(2)可得
(l
1
β
1
+l
2
β
2
,l
1
β
1
+l
2
β
2
)=0,
从而可得 l
1
β
1
+l
2
β
2
=0,
故β
1
,β
2
必线性相关。
转载请注明原文地址:https://www.kaotiyun.com/show/gjA4777K
0
考研数学二
相关试题推荐
(2008年试题,23)设A为三阶矩阵α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求-1PAP.
设函数f(u)可导,z==________.
下列反常积分发散的是()
设f(χ,y)在点(0,0)的某邻域内连续,且满足=3,则函数f(χ,y)在点(0,0)处().
设向量β可由向量组α1,α2,...,αm线性表示,但不能由向量组(I):α1,α2,...,αm-1线性表示,向量组(Ⅱ):α1,α2,...,αm-1,β,则
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组AX=β的3个线性无关的解,k1,k2为任意常数,则AX=β的通解为()
累次积分f(rcosθ.rsinθ)rdr可写成
累次积分rf(rcosθ,rsinθ)dr等于().
(2003年试题,十)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.f’(x)>0.若极限存在,证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ使(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2
[2012年]求极限
随机试题
引起疼痛的原因有()
A.溴化银B.氯化银C.碘化银D.氟化银E.溴化银+碘化银不能使用的感光银盐为
风温初起,症见但咳,身热不甚,口微渴,脉浮数。方剂宜选用
A.乙烯-醋酸乙烯共聚物B.复合铝箔膜C.压敏胶D.塑料膜E.水凝胶
设f(x)是[a,b]上的连续函数,且对于满足∫abg(x)dx=0的任意连续函数g(x),都有∫abf(x)g(x)dx=0,证明存在ξ∈[a,b]使得f(x)=f(ξ)恒成立。
学生学会了素描,再学习油画就比较容易,会打棒球的人也容易学习高尔夫球。这种现象属于()
假定已在窗体上画了多个控件,其中有一个被选中,为了在属性窗口中设置窗体的属性,预先应执行的操作是
“Web2.0”的概念开始于一个会议中,展开于O’Reilly公司和MediaLive国际公司之间的头脑风暴部分。互联网先驱O’Reilly公司副总裁戴尔.多尔蒂(DaleDougherty)注意到,同所谓的“崩溃”不同,互联网比其他任何时候都更重要,
Youaretheownerofaclothingfactory.Acustomerhassentyoualettersummarizingarecentnegotiation.Lookattheinfo
Accordingtoasurvey,whichwasbasedontheresponsesofover188,000students,today’straditional-agecollegefreshmenare"
最新回复
(
0
)