首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E一2ξξT,其中ξ=(x1,x2,…,xn)T,且有ξTξ=1。则 ①A是对称矩阵; ②A2是单位矩阵; ③A是正交矩阵; ④A是可逆矩阵。 上述结论中,正确的个数是( )
设A=E一2ξξT,其中ξ=(x1,x2,…,xn)T,且有ξTξ=1。则 ①A是对称矩阵; ②A2是单位矩阵; ③A是正交矩阵; ④A是可逆矩阵。 上述结论中,正确的个数是( )
admin
2019-03-14
83
问题
设A=E一2ξξ
T
,其中ξ=(x
1
,x
2
,…,x
n
)
T
,且有ξ
T
ξ=1。则
①A是对称矩阵;
②A
2
是单位矩阵;
③A是正交矩阵;
④A是可逆矩阵。
上述结论中,正确的个数是( )
选项
A、1。
B、2。
C、3。
D、4。
答案
D
解析
A
T
=(E一2ξξ
T
)
T
=E
T
一(2ξξ
T
)
T
=E一2ξξ
T
=A,①成立。
A
2
=(E一2ξξ
T
)(E一2ξξ
T
)=E一4ξξ
T
+4ξξ
T
ξξ
T
=E一4ξξ
T
+4ξ(ξ
T
ξ)ξ
T
=E,②成立。
由①、②,得A
2
=AA
T
=E,故A是正交矩阵,③成立。
由③知正交矩阵是可逆矩阵,且A
-1
=A
T
,④成立。
故应选D。
转载请注明原文地址:https://www.kaotiyun.com/show/fOj4777K
0
考研数学二
相关试题推荐
证明α1,α2,…,αs(其中α1≠0)线性相关的充分必要条件是存在一个αi(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
求由曲线χ=a(t-sint),y=a(1-cost)(0≤t≤2π),y=0所围图形(Ⅰ)绕Oχ轴:(Ⅱ)绕y=2a旋转所成立体的体积.
设A,B和C都是n阶矩阵,其中A,B可逆,求下列2n阶矩阵的伴随矩阵.
设A是n阶实反对称矩阵,证明(E-A)(E+A)-1是正交矩阵.
用配方法化下列次型为标准型(1)f(χ1,χ2,χ3)=χ12+2χ22+2χ1χ2-2χ1χ3+2χ2χ3.(2)f(χ1,χ2,χ3)=χ1χ2+χ1χ3+χ2χ3.
已知以2π为周期的周期函数f(χ)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(χ)=(sinχ-1)2)f(χ),证明使得F〞(χ0)=0.
求函数y=的单调区间,极值点,凹凸性区间与拐点.
设m,n均是正整数,则反常积分的收敛性()
若函数y=f(x),有f’(x)=,则当△x→0时,该函数在x=x0处的微分dy是
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+
随机试题
水痘是一种常见病情较轻的_______传染病。
腰穿的禁忌证为
A.阿苯达唑B.手术治疗C.吡喹酮D.乙胺嗪E.海群生
组成蔗糖的是
行政处罚是具有制裁性质的具体行政行为,可分为()。
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,记Y=n(X1一2X2)2+b(3X3—4X4)2,其中a,b为常数,已知Y~χ2(n),则
AgreatFrenchwriter(作者,作家)hassaidthatweshouldhelpeveryoneasmuchaswecan,becauseweoftenneedhelpourselves(我们自己
Whatisaresearchproposal?1)intendedtoconvinceothersthat--youhaveaworthwhile【1】______--youhavethe【2】______a
A、Preparingaspeechwellinadvance.B、Ignoringtheaudience’sreaction.C、Beingconfidentontheplatform.D、Learningthemain
BetterHalvesJerryandEileenSpinellimet,quiteliterally,overwriting.Atthetime,theyworkedforthesamecompanybu
最新回复
(
0
)