首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元线性方程组Ax=b,其中 (Ⅰ)证明行列式|A|=(n+1)an; (Ⅱ)当a为何值时,该方程组有唯一解,并求x1; (Ⅲ)当a为何值时,该方程组有无穷多解,并求通解。
设n元线性方程组Ax=b,其中 (Ⅰ)证明行列式|A|=(n+1)an; (Ⅱ)当a为何值时,该方程组有唯一解,并求x1; (Ⅲ)当a为何值时,该方程组有无穷多解,并求通解。
admin
2019-03-07
55
问题
设n元线性方程组Ax=b,其中
(Ⅰ)证明行列式|A|=(n+1)a
n
;
(Ⅱ)当a为何值时,该方程组有唯一解,并求x
1
;
(Ⅲ)当a为何值时,该方程组有无穷多解,并求通解。
选项
答案
(Ⅰ)记D
n
=|A|,将其按第一列展开得D
n
=2aD
n-1
-a
2
D
n-2
,所以 D
n
-aD
n-1
=aD
n-1
-a
2
D
-2
=a(D
n-1
-aD
n-2
) =a
2
(D
n-2
-aD
n-3
)=…=a
n-2
(D
2
一aD
1
)=a
n
。 即 D
n
=a
n
+aD
n-1
=a
n
+a(a
n-1
+aD
n-2
)=2a
n
+a
2
D
n-2
=…=(n-2)a
n
+a
n-2
D
2
=(n-1)a
n
+a
n-1
D
1
=(n-1)a
n
+a
n-1
.2a=(n+1)a
n
。 (Ⅱ)由克拉默法则,当a≠0时,方程组系数行列式D
n
≠0,故方程组有唯一解。将D
n
的第一列换成b,得行列式为 [*] (Ⅲ)方程组有无穷多解,则|A|=0,即当a=0时,方程组为 [*] 此时方程组系数矩阵的秩和增广矩阵的秩均为n一1,所以方程组有无穷多组解,其通解为 x=(0,1,…,0)
T
+k(1,0,…,0)
T
, 其中k为任意常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/gH04777K
0
考研数学一
相关试题推荐
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是()
已知齐次线性方程组(Ⅰ)和(Ⅱ)同解,求a,b,c的值。
在某国,每年有比例为p的农村居民移居城镇,有比例为q的城镇居民移居农村。假设该国总人口数不变,且上述人口迁移的规律也不变。把n年后农村人口和城镇人口占总人口的比例依次记为xn和yn(xn+yn=1)。(Ⅰ)求关系式中的矩阵A;(Ⅱ)设目前农村人口与城镇
(2005年)设Ω是由锥面与半球面围成的空间区域,∑是Ω的整个边界的外侧,则
(2000年)计算曲线积分其中L是以点(1,0)为中心,R为半径的圆周(R>1),取逆时针方向。
(2000年)微分方程xy"+3y′=0的通解为_____________。
(2000年)
已知微分方程y’+y=f(x),且f(x)是R上的连续函数.(I)当f(x)=x时,求微分方程的通解.(Ⅱ)当f(x)为周期为T的函数,证明:微分方程存在唯一以T为周期的解.
设半径为R的球之球心位于以原点为中心、a为半径的定球面上(2a>R>0,a为常数).试确定R为何值时前者夹在定球面内部的表面积为最大,并求出此最大值.
随机试题
工作日志的缺点是()。
我国正式开始启用2000国家大地坐标系的时间是()。
某地拟建一公路,全长120km,项目沿线经过5个镇的10个村、2个工业区。所选路线跨越一级水源保护区、风景旅游区和一个自然保护区,跨过两条河流和两座山,周边还包括超高压变电站。沿线某些路段现有道路,将道路进行拓宽,标准路幅宽75m,主道双向八车道
某小城市城区依山临河而建。城北为风景区(含北山水库),该风景区按规划保护较好。水库库容属中型,用作灌溉及城市水源,南河水源丰富,西河为水库泄洪道。沿河的人工堤岸能满足城区防洪要求。为发展旅游和完善市政设施等,该市初步拟定建设如下项目(见示意图1.3
在证券经纪业务中,证券经纪商应该承担的义务包括()。
中央银行从事公开市场操作的目的在于()。
评述改革派的教育主张。
下列选项中,不属于吸收犯的形式的是()
如果将测验对等分半后,两半测验的得分的相关系数为0.6,那么该测验校正后的信度是()
关系的数据操纵语言按照表达式查询方式可分为两大类,关系代数和【】。
最新回复
(
0
)