首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)设α1,α2,…,αn为n个n维线性无关的向量,且β与α1,α2,…,αn正交,证明:β=0, (Ⅱ)设α1,α2,…,αn-1为n-1个n维线性无关的向量,α1,α2,…,αn-1与非零向量β1,β2正交,证明:β1,β2线性相关
(I)设α1,α2,…,αn为n个n维线性无关的向量,且β与α1,α2,…,αn正交,证明:β=0, (Ⅱ)设α1,α2,…,αn-1为n-1个n维线性无关的向量,α1,α2,…,αn-1与非零向量β1,β2正交,证明:β1,β2线性相关
admin
2016-03-18
59
问题
(I)设α
1
,α
2
,…,α
n
为n个n维线性无关的向量,且β与α
1
,α
2
,…,α
n
正交,证明:β=0,
(Ⅱ)设α
1
,α
2
,…,α
n-1
为n-1个n维线性无关的向量,α
1
,α
2
,…,α
n-1
与非零向量β
1
,β
2
正交,证明:β
1
,β
2
线性相关
选项
答案
(I)令[*],因为α
1
,α
2
,...,α
n
线性无关,所以r(A)=n,又因为α
1
,α
2
,...,α
n
与β正交,所以Aβ=0,从而r(A)+r(β)≤n,注意到r(A)=n,于是r(β)=0,即β为零向量 (Ⅱ)方法一: 令[*],B=(β
1
,β
2
),因为α
1
,α
2
,...,α
n-1
线性无关,所以r(A)=n-1,又因为α
1
,α
2
,...,α
n-1
与线性正交,所以AB=0,从而r(A)+r(B)≤n,注意到r(A)=n-1,所以r(B)≤1,即β
1
,β
2
线性相关 方法二: 令[*],因为α
1
,α
2
,...,α
n-1
线性无关,所以r(A)=n-1,因为α
1
,α
2
,...,α
n-1
与β
1
,β
2
正交,所以β
1
,β
2
为方程组AX=0的两个解,而方程AX=0的基础解系含有一个线性无关的解向量,所以β
1
,β
2
线性相关
解析
转载请注明原文地址:https://www.kaotiyun.com/show/g3w4777K
0
考研数学一
相关试题推荐
若由曲线y=,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是()。
则f(x)在x=0处()。
设且f"(0)存在,求a,b,c。
设a>0,f(x)=g(x)=,而D表示整个平面,则=________.
设A是n阶矩阵,下列命题错误的是()。
设f(x)是二阶常系数非齐次线性微分方程y"+py‘+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,()。
设容器的内表面是由曲线x=y+siny(0≤y≤π/2)绕y轴旋转一周所得的旋转曲面,若以π(m3/s)的速率注入液体。问需要多少时间能将容器注满水。
设函数z=z(x,y)由方程x2+y2+z2=xyf(z2)确定,其中f可微,求的最简表达式.
因为总体X在区间(0,0)内服从均匀分布,[*]
函数u=x2-2yz在点(1,-2,2)处的方向导数量大值为__________.
随机试题
逐步结转分步法是为了计算半成品成本而采用的一种分步法。()
不符合面神经炎表现的是
下列不属于纤维胆道镜并发症的是
多食易饥,兼见大便溏泻者属
在()中,抵押贷款组合的所有权随着证券的出售而从发行人转移给证券投资者。
某施工企业年初向银行贷款流动资金100万元,按季计算并支付利息,季度利率2%,则一年支付的利息总和为()万元。
(Ⅰ)证明:对任意的正整数n,都有成立;(Ⅱ)设an=1+-lnn(n=1,2,…),证明数列{an}收敛。
通常在软件的(18)活动中无需用户参与。
Ifthesellerfailstoprovidegoodtitle,thecontractwillbecomenulland______.
ThereisprogresstowardapossibletreatmentforlungdiseasessuchasSARS(severeacuterespiratorysyndrome).Researchersha
最新回复
(
0
)