首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为3阶相似矩阵,且|2E+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=________.
设A,B为3阶相似矩阵,且|2E+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=________.
admin
2019-01-05
57
问题
设A,B为3阶相似矩阵,且|2E+A|=0,λ
1
=1,λ
2
=一1为B的两个特征值,则行列式|A+2AB|=________.
选项
答案
18
解析
由|2E+A|=|A一(一2E)|=0知λ=一2为A的一个特征值.由A~B知A和B有相同特征值,因此λ
1
=1,λ
2
=一1也是A的特征值.故A,B的特征值均为λ
1
=1,λ
2
=-1,λ
3
=-2.则有E+2B的特征值为1+2×1=3,1+2×(-1)=-1,1+2×(-2)=一3,从而
|E+2B|=3×(一1)×(-3)=9,|A|=λ
1
λ
2
λ
3
=2.
故
|A+2AB|=|A(E+2B)|=|A||E+2B|=2×9=18.
转载请注明原文地址:https://www.kaotiyun.com/show/frW4777K
0
考研数学三
相关试题推荐
当x>0时,证明:
设f(x)二阶可导,f(0)=f(1)=0且=一1.证明:存在ξ∈(0,1),使得f"(ξ)≥8.
设A,B,C是三个两两相互独立的事件,且P(ABC)=0,0<P(C)<1,则一定有().
设随机变量X服从几何分布,其分布列为P(X=k)=(1一p)k一1p=pqk一1,0<q<1,q=1一p,k=1,2,…,求E(X)与D(X).
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。(Ⅰ)求L的方程;(Ⅱ)当L与直线y=ax所围成平面图形的面积为时,确定a的值。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0。证明:向量组α,Aα,…,Ak—1α是线性无关的。
设二次型f(x1,x2,x3)=ax12+ax22+(a—1)x32+2x1x3—2x2x3。(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值。
已知齐次线性方程组有通解k1(2,—1,0,1)T+k2(3,2,1,0)T,则方程组的通解是________。
设y=f(x)在(a,b)可微,则下列结论中正确的个数是()①x0∈(a,b),若f’(x0)≠0,则Ax→0时dy|x=x0与△x是同阶无穷小。②df(x)只与x∈(a,b)有关。③△y=f(x+Ax)—f(x),则dy≠△y。④△x→
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程=e2x.求f(u)。
随机试题
下面的结构示意图显示的是干式报警阀未开启(准工作)状态。()
A.PR间期延长B.P波与QRS波群无关C.PR间期逐渐延长,继之QRS波群脱落,呈周期性D.PR间期固定,有时QRS波群脱落三度房室阻滞
最可能的诊断是治疗原则不正确的是
A.桂枝茯苓丸B.血府逐瘀汤C.失笑散D.膈下逐瘀汤E.桃红四物汤治疗子宫肌瘤气滞血瘀证,应首选
依法必须招标的国家重大建设项目,必须在报送项目的()报告中增加有关招标内容。
根据国内生产总值的收入法计算公式,企业增加值的构成项目不包括()。
甲公司于20×7年1月1日将已到期并按公允价值进行后续计量的出租建筑物转为自用。该项建筑物的原价为2000万元,持有期间的公允价值累计增加为400万元,转换日的公允价值为2500万元。在不考虑相关税费的情况下,甲公司因该项转换而影响当期损益的金额为(
案例:【胶体的课堂导入】教师上课用PPT展示图片,万道金光射到森林中的景象(丁达尔现象),三角洲的形成(胶体的凝聚),黄山晨雾美景,工厂上方浓烟(气溶胶),烟水晶,有色玻璃(固溶胶)等。教师提问:“同学们,你们知道这些现象是什么吗?这些物质是怎么形成的吗
下列加点字的释义全都正确的是:
Ithasbeenproventhatshortburstsofconcentrationrepeatedfrequentlyaremuchmore【B1】______thanonelongperiod.So,even
最新回复
(
0
)