首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是( )
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是( )
admin
2017-01-21
107
问题
已知β
1
,β
2
是非齐次线性方程组Ax=b的两个不同的解,α
1
,α
2
是对应的齐次线性方程组Ax=0的基础解系,k
1
,k
2
为任意常数,则方程组Ax=b的通解是( )
选项
A、
B、
C、
D、
答案
B
解析
对于A、C选项,因为
所以选项A、C中不含有非齐次线性方程组Ax=b的特解,故均不正确。
对于选项D,虽然β
1
—β
2
是齐次线性方程组Ax=0的解,但它与α
1
不一定线性无关,故D也不正确,所以应选B。
事实上,对于选项B,由于α
1
,α
1
—α
2
与α
1
,α
2
等价(显然它们能够互相线性表示),故α
1
,α
1
一α
2
也是齐次线性方程组的一组基础解系,而由
可知
是齐次线性方程组Ax=b的一个特解,由非齐次线性方程组的通解结构定理知,B选项正确。
转载请注明原文地址:https://www.kaotiyun.com/show/E2H4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设函数z=f(x,y)在点(1,1)处可微,且f(1,1)=1,
求二元函数f(x,y)=x2(2+y2)+ylny的极值.
方程两边对x求导得ex+y(1+yˊ)-sin(xy)(xyˊ+y)=0.[*]
设X,Y是两个随机变量,且P{x≤1,Y≤1}=4/9,P{x≤1}=P{Y≤1}=5/9,则P{min(X,Y)≤1}=().
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解必是
二次型f(x1,x2,x3)=x12+x22+x12-4x2x3的正惯性指数为().
ln2本题的被积函数是幂函数与指数函数两类不同的函数相乘,应该用分部积分法.[解法一]因为所以而故原式=In2.[解法二]
设求f(x)的间断点,并说明间断点的类型,如是可去间断点,则补充或改变定义使它连续.
随机试题
嵇康诗歌的艺术特色。
关于子宫阔韧带的说法.错误的是()
《冯谖客孟尝君》中,凿成三窟的最主要人物是()
食物蛋白质的生物学价值是指
突然发生的短暂的意识丧失称为()
宏观经济分析的总量分析法侧重对经济系统中各组成部分及其对比关系变动规律的分析。( )
A.Well,aboutcostumesB.ButyouknowmewithfashionC.Ikindoffeelthatit’smoreaboutmusicitselfD.Soyouhavetoch
拉美独立战争中,委内瑞拉地区一位著名领导人,他曾经领导建立委内瑞拉第二和第三共和国,这位领导人是()。
若有以下定义,则对数组元素的正确引用是()。inta[5],*p=a;
Imayhavetogointohospital,______(在这种情况下我就不能去度假了).
最新回复
(
0
)