首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列关于向量组线性相关性的说法正确的个数为( ) ①若α1,α2,…,αn线性相关,则存在全不为零的常数k1,k2,…,kn,使得k1α1+k2α2+…+knαn=0。 ②如果α1,α2,…,αn线性无关,则对任意不全为零的常数k1,k2,…,kn,
下列关于向量组线性相关性的说法正确的个数为( ) ①若α1,α2,…,αn线性相关,则存在全不为零的常数k1,k2,…,kn,使得k1α1+k2α2+…+knαn=0。 ②如果α1,α2,…,αn线性无关,则对任意不全为零的常数k1,k2,…,kn,
admin
2019-08-12
85
问题
下列关于向量组线性相关性的说法正确的个数为( )
①若α
1
,α
2
,…,α
n
线性相关,则存在全不为零的常数k
1
,k
2
,…,k
n
,使得k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0。
②如果α
1
,α
2
,…,α
n
线性无关,则对任意不全为零的常数k
1
,k
2
,…,k
n
,都有k
1
α
1
+k
2
α
2
+…+k
n
α
n
≠0。
③如果α
1
,α
2
,…,α
n
线性无关,则由k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0可以推出k
1
=k
2
=…k
n
=0。
④如果α
1
,α
2
,…,α
n
线性相关,则对任意不全为零的常数k
1
,k
2
,…,k
n
,都有k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0。
选项
A、1。
B、2。
C、3。
D、4。
答案
B
解析
对于①,线性相关的定义是:存在不全为零的常数k
1
,k
2
,…,k
n
,使得k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0。不全为零与全不为零不等价,故①错。
②和③都是向量组线性无关的等价描述,正确。
对于④,线性相关性只是强调不全为零的常数k
1
,k
2
,…,k
n
的存在性,并不一定要对任意不全为零的k
1
,k
2
,…,k
n
都满足k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0,故④错误。事实上,当且仅当α
1
,α
2
,…,α
n
全为零向量时,才能满足对任意不全为零的常数k
1
,k
2
,…,k
n
,都有k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0。
综上所述,正确的只有两个,故选B。
转载请注明原文地址:https://www.kaotiyun.com/show/fiN4777K
0
考研数学二
相关试题推荐
设p(x),q(x)与f(x)均为连续函数,设y1(x),y2(x)与y3(x)是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)①的3个解,且则式①的通
下列命题正确的是()
设A,B均为n阶矩阵,A有n个互不相同的特征值.证明:若A的特征向量也是B的特征向量,则AB=BA.
设f(t)具有二阶导数,求f[f’(x)],{f[f(x)]}’.
微分方程y"一2y’+y=ex的特解形式为(其中A,B,C,D为常数)()
方程y(4)一2y’"一3y"=e-3x一2e-x+x的特解形式(其中a,b,c,d为常数)是()
判断下列级数的敛散性.
已知曲线y=y(x)经过点(1,e-1),且在点(x,y)处的切线方程在y轴上的截距为xy,求该曲线方程的表达式.
设F(x)在x=0的某邻域内连续,且当x→0时,f(x)与xm为同阶无穷小.又设当x→0时,F(x)=∫0xnf(t)dt与xk为同阶无穷小,其中m与n为正整数.则k=()
设.若A,B等价,则参数t应满足条件______.
随机试题
患者,女性,45岁。失眠多梦,心悸,气短头晕,肢倦乏力,面色萎黄,纳少,大便溏薄,舌淡,苔白,脉细弱。该患者适宜的中成药是
纳税人建造普通标准住宅出售,增值额未超过扣除项目金额()的,免征土地增值税。
《公路水运工程安全生产监督管理办法》第十九条规定()等设施在投入使用前,施工单位应当组织有关单位进行验收,或者委托具有相应资质的检验检测机构进行验收。
对施工方案中选用的模板、脚手架等施工设备,除按适用的标准定型选用外,还应将()作为重点进行控制。
关于会计政策变更采用的追溯调整法和未来适用法,下列说法中正确的有()。
下列各项有关职工薪酬确认和计量的表述中正确的有()。
房地产市场供给的特点主要有()。
下列有关日常生活的说法,正确的是()。
有定义语句:inta=1,b=2,c=3,x;,则以下选项中各程序段执行后,x的值不等于3的是______。
A、Freedom.B、Travelswiftly.C、Travelunsafely.D、Displaypersonalwealth.C
最新回复
(
0
)