首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1990年)求微分方程y’+2cosx=(1nx)e-sinx的通解.
(1990年)求微分方程y’+2cosx=(1nx)e-sinx的通解.
admin
2018-07-24
92
问题
(1990年)求微分方程y’+2cosx=(1nx)e
-sinx
的通解.
选项
答案
由一阶线性方程求解公式得 y=e
-∫cosxdx
[∫(lnx)e
-sinx
e
∫cosxdx
+C]=e
-sinx
[∫lnxdx+C]=e
-sinx
[xlnx一x+C]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/eGW4777K
0
考研数学三
相关试题推荐
设收敛,则下列级数必收敛的是().
设f(x)在(-∞,+∞)上具有连续导数,且f’(0)≠0.令F(x)=求证:(Ⅰ)若f(x)为奇函数,则F(x)也是奇函数.(Ⅱ)(0,0)是曲线y=F(x)的拐点.
设f(x)为连续函数,证明:
求下列极限:
已知方程组的通解是(1,2,-1,0)T+k(-1,2,-1,1)T,则a=______.
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程y’+ky=f(x)存在唯一的以ω为周期的特解,并求此特解,其中k为常数.
设y=f(x)是区间[0,1]上的任一非负连续函数。(Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>—证
已知f(x)在x=0的某个邻域内连续,且f(0)=0,=2,则在点x=0处f(x)()
设三阶矩阵A的特征值是0,1,一1,则下列选项中不正确的是()
设4阶矩阵A=(α1,α2,α3,α4),已知齐次方程组AX=0的通解为c(1,-2,1,0)T,c任意,则下列选项中不对的是()。
随机试题
排便反射的初级中枢位于
祛湿剂属于“八法”中的什么法
A.急性扁桃体炎B.咽白喉C.单核细胞增多症D.樊尚咽峡炎E.白血病致咽炎急性发病,有咽痛,一侧扁桃体充血肿胀、溃烂,灰白色分泌物位于扁桃体表面,易拭去,早期白细胞减少
对血管炎发病机制的描述,下列正确的是
以下哪项不属于外国投资者对上市公司进行战略投资的要求?()
在中国境内注册、拥有部分外国资本股份的外资银行是()。
冯某为自己投保人寿险,保险合同约定分期支付保费;冯某支付了首期保费后,因冯某所在地发生特大洪水,故超过约定期限60日仍未支付第二期保费。根据保险法律制度的规定,除合同另有约定外,冯某逾期60日未支付保费的行为可能引起的后果有()。
期望理论中动机的决定因素不包括()。
Software quality assurance is now an(71)sub-discipline of software engineering. As Bucldy and Oston point out,(72)software quali
Whatdoestheconversationtakeplace?
最新回复
(
0
)