首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f0(x)是[0,+∞)上的连续的单调增加函数,函数f1(x)=∫0xf0(t)dt/x, (1)补充定义f1(x)在x=0的值,使得补充定义后的函数(仍记为f1(x))在[0,+∞)上连续; (2)在(1)的条件下,证明f1(x)<f0
设f0(x)是[0,+∞)上的连续的单调增加函数,函数f1(x)=∫0xf0(t)dt/x, (1)补充定义f1(x)在x=0的值,使得补充定义后的函数(仍记为f1(x))在[0,+∞)上连续; (2)在(1)的条件下,证明f1(x)<f0
admin
2021-04-16
103
问题
设f
0
(x)是[0,+∞)上的连续的单调增加函数,函数f
1
(x)=∫
0
x
f
0
(t)dt/x,
(1)补充定义f
1
(x)在x=0的值,使得补充定义后的函数(仍记为f
1
(x))在[0,+∞)上连续;
(2)在(1)的条件下,证明f
1
(x)<f
0
(x)(x>0),且f
1
(x)也是[0,+∞)上的连续的单调增加函数;
(3)令f
n
(x)=∫
0
x
f
n-1
(t)dt/x,n=1,2,3,…,证明:对任意的x>0,极限
存在。
选项
答案
(1)因[*] 故补充定义f
1
(0)=f
0
(0),使得f
1
(x)在[0,+∞)上连续, (2)当x>0时,由积分中值定理,f
1
(x)=∫
0
x
f
0
(t)dt/x=f
0
(ζ),0<ζ<x,因f
0
(x)单调增加,故f
0
(ζ)<f
0
(x),即f
1
(x)<f
0
(x)(x>0)。 由(1)知,f
1
(x)在[0,+∞)上连续,又当x>0时,f’(x)=xf
0
∫
0
x
f
0
(t)dt/x
2
=[f
0
(x)-f
0
(ζ)]/x>0, 故f
1
(x)是[0,+∞)上的连续的单调增加函数。 (3)当x>0时,对于f
2
(x)=∫
0
x
f
1
(t)dt/x,仿(2)的处理方法,由积分中值定理,有 f
2
(x)=∫
0
x
f
1
(t)dt/x=f
1
(η)x/x=f
1
(η),0<η<x,由f
1
(η)单调增加,知f
1
(η)<f
1
(x),故f
2
(x)<f
1
(x)且f’
2
(x)=xf
1
(x)∫
0
x
f
1
(t)dt/x
2
=[f
1
(x)-f
1
(η)]/x>0,故f
2
(x)单调增加。 仿(1)的处理方法,在x>0时,有 [*] 于是可有f
n
(x)<f
n-1
(x)<…<f
0
(x),即f
n
(x)随n增大而减小,又由(2)知f
n
(x)是单调增加函数,且 [*] 即数列{f
n
(x)}单调减少且有下界,故对任意的x>0,极限[*]存在。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/dpx4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 C
函数y=y(x)由方程所确定,则
设总体X一N(μ,σ2),σ2未知,若样本容量n和置信度1一a均不变,则对于不同的样本观察值,总体均值μ的置信区间的长度().
设二维随机变量(X,Y)的联合分布函数为F(x,y),其中X服从正态分布N(0,1),且Y=X,若F(a,b)=,则()
若n阶非奇异矩阵A的各行元素之和为2,则A-1+A2必有一个特征值为().
假设随机变量X与Y的相关系数为ρ,则ρ=1的充要条件是()
设函数y=y(x)是微分方程y′—xy=满足y(1)=特解.求y(x).
用配方法化下列二次型为标准形:f(x1,x2,x3)=x12+2x22-5x32+2x1x2-2x1x3+2x2x3.
曲线的斜渐近线为______.
求y=f(x)=的渐近线.
随机试题
下列各种组织哪一种再生能力最强
A.PKAB.PKGC.PKCD.PLC依赖cGMP的蛋白激酶是
粉剂的主要基质组成不包括
砖砌体水平灰缝的砂浆饱满度,下列哪条是正确的?[2001年第39题][2004年第27题]
FIDIC《施工合同条件》中的“助手”相当于我国工程项目管理中的()。
隧道竣工后应提交( )等测量资料。
教师向学生讲解纪实文学的特点时,想举例加以说明,以下作品不合适的是()。
王旦与寇准同为北宋真宗时期才能出众、政绩卓著的宰相,同样受到宋真宗的器重。一次王旦这边送公文到寇准那边,体例不合。寇准禀报上去,王旦被真宗批评,手下人也都跟着挨了罚。不久,寇准那边送来的公文也出了类似问题,王旦只是派人送还给寇准,请他改正后再呈送。平时,说
要坚持深化改革和创新体制,加强()建设,形成拒腐防变教育长效机制、反腐倡廉制度体系、权力运行监控机制。
Mostpeoplehavenoideaofthehardworkandworryaboutgoingintocollectionofthosefascinatingbirdsandanimalsthatthey
最新回复
(
0
)