首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4为4维列向量组,其中α1,α2,α3线性无关,α4=α1+α2+2α3,记A=[α1-α2,α2+α3,-α1+aα2+α3],且方程组Ax=α4有无穷多解.求: 常数a的值;
设α1,α2,α3,α4为4维列向量组,其中α1,α2,α3线性无关,α4=α1+α2+2α3,记A=[α1-α2,α2+α3,-α1+aα2+α3],且方程组Ax=α4有无穷多解.求: 常数a的值;
admin
2021-07-27
63
问题
设α
1
,α
2
,α
3
,α
4
为4维列向量组,其中α
1
,α
2
,α
3
线性无关,α
4
=α
1
+α
2
+2α
3
,记A=[α
1
-α
2
,α
2
+α
3
,-α
1
+aα
2
+α
3
],且方程组Ax=α
4
有无穷多解.求:
常数a的值;
选项
答案
由题设,x为3维列向量,设x=[x
1
,x
2
,x
3
]
T
,则x
1
(α
1
-α
2
)+x
2
(α
2
+α
3
)+x
3
(-α
1
+aα
2
+α
3
)=α
1
+α
2
+2α
3
,整理得(x
1
-x
3
-1)α
1
+(-x
1
+x
2
+ax
3
-1)α
3
+(x
2
+x
3
-2)α
3
=0·由α
1
,α
2
,α
3
线性无关,故 [*] 由r(B)=r([B|β])<3,有2-a=0,即a=2.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/dhy4777K
0
考研数学二
相关试题推荐
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则().
设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().
设A为m×n矩阵,B为n×m矩阵,若AB=E,则()
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则().
齐次线性方程组Ax=0的系数矩阵A4×5=(α1,α2,α3,α4,α5)经初等行变换化为阶梯形矩阵A=(α1,α2,α3,α4,α5)→,则()
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是()
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
下列行列式的值为n!的是().
已知向量组(Ⅰ)α1,α2,α3,α4线性无关,则与(Ⅰ)等价的向量组是()
随机试题
风湿性心脏瓣膜病二尖瓣狭窄出现急性肺水肿是由于
A.使君子B.鹤虱C.榧子D.槟榔不能够与热茶同服的药物是
患者,男,66岁。自退休后,几乎不与朋友联系,对各种社会活动也不感兴趣,对外界任何事物均不关心。患者采用的退休适应方式是
决定和决议的主要区别是()。
在长期生产中,厂商总是可以在每一产量水平上找到相应的最优生产规模进行生产。在短期内,厂商做不到这一点。()
TheEnglishword"empathy"cameintobeingonlyaboutacenturyagoasatranslationfortheGermanpsychologicaltermEinfuhlun
在SQLServer2008某数据库中,设用户Ul是db_datawriter角色中的成员。下列关于U1在该数据库中具有的权限的说法,正确的是()。
Mikeisworriedabout______.
A、Yes,shedoes.B、Yes,shecan.C、No,shecan’t.A听力原文:Doesshedowellinbasketball?意为:她擅长篮球吗?这是一般疑问句,而且以助动词does开头,回答时也应该用doe
Thenewcomputervirus______,thesystemwasrestoredtoitsnormaloperation.
最新回复
(
0
)