首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
admin
2019-08-12
73
问题
设矩阵A=(α
1
,α
2
,α
3
,α
4
)经行初等变换为矩阵B=(β
1
,β
2
,β
3
,β
4
),且α
1
,α
2
,α
3
线性无关,α
1
,α
2
,α
3
,α
4
线性相关,则( ).
选项
A、β
4
不能由β
1
,β
2
,β
3
线性表示
B、β
4
能由β
1
,β
2
,β
3
线性表示,但表示法不唯一
C、β
4
能由β
1
,β
2
,β
3
线性表示,且表示法唯一
D、β
4
能否由β
1
,β
2
,β
3
线性表示不能确定
答案
C
解析
因为α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,所以α
4
可由α
1
,α
2
,α
3
唯一线性表示,又A=(α
1
,α
2
,α
3
,α
4
)经过有限次初等行变换化为B=(β
1
,β
2
,β
3
,β
4
),所以方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=α
4
与x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
是同解方程组,因为方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=α
4
有唯一解,所以方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
有唯一解,即β
4
可由β
1
,β
2
,β
3
唯一线性表示,选(C).
转载请注明原文地址:https://www.kaotiyun.com/show/15N4777K
0
考研数学二
相关试题推荐
(06年)微分方程的通解是_______.
(05年)当x→0时,α(x)=kx2与β(x)=是等价无穷小.则k=______
设f(x,y)是定义在区域0≤x≤1,0≤y≤1上的二元连续函数,f(0,0)=一1,求极限
(1999年)设矩阵矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵.求矩阵X.
设向量组α1=(2,1,1,1),α2=(2,1,a,a),α3=(3,2,1,a),α4=(4,3,2,1)线性相关,且a≠1,则a=______.
设4阶方阵A=[α,γ2,γ3,γ4],B=[β,γ2,γ3,γ4],其中α,β,γ2,γ3,γ4都是4维列向量,且|A|=4,|B|=1,则|A+B|=_______.
(15)设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
设则I,J,K的大小关系为()
细菌的增长率与总数成正比.如果培养的细菌总数在24h内由100增长到400,求前12h后的细菌总数.
细菌的增长率与总数成正比.如果培养的细菌总数在24h内由100增长到400,求前12h后的细菌总数.
随机试题
下列不属于消防水泵接合器的组成构件的是()。
A.盐析固化法B.逆相蒸发法C.单凝聚法D.熔融法E.饱和水溶液法
某工程双代号时标网络计划执行到第5周和第11周时,检查其实际进度如下图前锋线所示,由图可以得出的正确结论有()。
李某发现近段时间期货交易行情很好,于是找到其在某期货公司(非国有)工作的朋友王某,给其5万元钱的“劳务费”,让他帮忙寻找点“有用信息”,王某利用其职务上的便利,多次非法向李某提供内幕信息,李某从中获利10万余元。另外,据调查,王某还曾经于2007年5月份帮
下列关于基金当事人地位与责任的说法,不正确的是()。(2009年上半年)
下列选项中属于行政层级式非个人因素的描述的是( )。
自2014年年初以来,A公司出现不能清偿到期债务,且资产不足清偿全部债务的情况,2015年1月1日,人民法院经审查裁定受理了A公司的破产清算申请,并指定了管理人。在该破产案件中,存在下述情况:(1)2013年8月,A公司将自己一辆市场价格为100万元的小
影响物业价格的心理因素主要有()。
不在教师资格认定程序之列的是【】
耦合性和内聚性是对模块独立性度量的两个标准。下列叙述中正确的是
最新回复
(
0
)