首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=[a11,a21,…an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,…,ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(唯一零解).
设向量组α1=[a11,a21,…an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,…,ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(唯一零解).
admin
2021-07-27
57
问题
设向量组α
1
=[a
11
,a
21
,…a
n1
]
T
,α
2
=[a
12
,a
22
,…,a
n2
]
T
,…,α
s
=[a
1s
,a
2s
,…,a
ns
]
T
.证明:向量组α
1
,α
2
,…,α
s
线性相关(线性无关)的充要条件是齐次线性方程组
有非零解(唯一零解).
选项
答案
α
1
,α
2
,…,α
s
(线性无关)线性相关→(不)存在不全为零的x
1
,x
2
,…,x
s
,使得x
1
α
1
+x
2
α
2
+…+x
s
α
s
=0成立→(不)存在不全为零的x
1
,x
2
,…,x
s
,使得[*]→齐次线性方程组[*]有(唯一零解)非零解.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/cQy4777K
0
考研数学二
相关试题推荐
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
设A为m×n矩阵,B为n×m矩阵,且m>n,则必有()
过曲线y=χ2(χ≥0)上某点A作一切线,使之与曲线及χ轴围成图形面积为,求:(Ⅰ)切点A的坐标;(Ⅱ)过切点A的切线方程;(Ⅲ)由上述图形绕χ轴旋转的旋转体的体积.
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是()。
如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积∫0axf’(x)dx等于()
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
已知向量组则向量组α1,α2,α3,α4,α5的一个极大无关组为()
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
随机试题
下列各项中,应计入废品损失的是()。
甲上市公司拟购买乙公司55%股权,计算该收购行为是否构成重大资产重组的指标时,下列说法中正确的有()。
以下关于增值税纳税地点的表述中,错误的是()。
1942年延安整风运动的最主要任务是()
道家的教育主张“行不言之教”。()
你单位一个同事要参加岗位选举,他私下找你为他拉票,你怎么办?
来到新单位。你撰写的材料风格领导不喜欢,你怎么办?
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
下列叙述中,正确的是()。
Youngpeopleoftenwonderatthelargenumberofemployerswhodonotrespondtotheirapplicationforjobs.Theysaythatdespi
最新回复
(
0
)