首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2010年)箱中装有6个球,其中红、白、黑球的个数分别为1,2,3个,现从箱中随机地取出2个球,记X为取出的红球个数,Y为取出的白球个数。 (Ⅰ)求随机变量(X,Y)的概率分布; (Ⅱ)求Cov(X,Y)。
(2010年)箱中装有6个球,其中红、白、黑球的个数分别为1,2,3个,现从箱中随机地取出2个球,记X为取出的红球个数,Y为取出的白球个数。 (Ⅰ)求随机变量(X,Y)的概率分布; (Ⅱ)求Cov(X,Y)。
admin
2018-04-23
99
问题
(2010年)箱中装有6个球,其中红、白、黑球的个数分别为1,2,3个,现从箱中随机地取出2个球,记X为取出的红球个数,Y为取出的白球个数。
(Ⅰ)求随机变量(X,Y)的概率分布;
(Ⅱ)求Cov(X,Y)。
选项
答案
(Ⅰ)X的所有可能取值为0,1,Y的所有可能取值为0,1,2。 P{X=0,Y=0}=C
6
2
/C
6
2
=[*](取到的两个球都是黑球); P{X=0,Y=1}=C
2
1
C
3
1
/C
6
2
=[*](取到的一个是白球,一个是黑球); P{X=0,Y=2}=C
2
2
/C
6
2
=[*](取到的两个都是白球); P{X=1,Y=0}=C
1
1
C
3
1
/C
6
2
=[*](取到的一个是红球,一个是黑球); P{X=1,Y=1}=C
1
1
C
2
1
/C
6
2
=[*](取到的一个是红球,一个是白球); P{X=1,Y=2}=0/C
6
2
=0。 因此可得(X,Y)的联合分布律为 [*] (Ⅱ)根据协方差公式 Cov(X,Y)=E(XY)-E(X)E(Y), [*] Cov(X,Y)=E(XY)-E(X)E(Y)=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/bdX4777K
0
考研数学三
相关试题推荐
设幂级数在(一∞,+∞)内收敛,其和函数y(x)满足y”一2xy’一4y=0,y(0)=0,y’(0)=1.(1)证明:,n=1,2,…;(2)求y(x)的表达式.
求二元函数F(x,y)=xye一(x2)+y2在区域D={x,y)|x≥0,y≥0}上的最大值与最小值.
设f(x)在[一δ,δ]有定义,且f(0)=f’(0)=0,f"(0)=a>0,又收敛,则p的取值范围是
n维向量组(Ⅰ)α1,α2,…,αs和(Ⅱ)β1,β2,…,βt等价的充分必要条件是
幂级数在收敛区间(-a,a)内的和函数S(x)为_________.
设A,B是n阶方阵,X,Y,b是n×1矩阵,则方程组有解的充要条件是()
设电子管寿命X的概率密度为若一台收音机上装有三个这种电子管,求:(1)使用的最初150小时内,至少有两个电子管被烧坏的概率;(2)在使用的最初150小时内烧坏的电子管数y的分布律;(3)Y的分布函数.
设f(x)是以T为周期的连续函数,且F(x)=∫0xf(t)dt+bx也是以T为周期的连续函数,则b=________.
已知数列{xn}满足:x0=25,xn=arctanxn-1(n=1,2,3,…),证明{xn}的极限存在,并求其极限.
设事件A与B相互独立,已知它们都不发生的概率为0.16,又知A发生NB不发生的概率与B发生A不发生的概率相等,则A与B都发生的概率是______.
随机试题
三态门的输出端可出现()、()及()三种状态,因而称为三态门。
离心泵在液面之下,启动后不出水的原因可能是()。
简述格式条款的特点。
Austin-Flint杂音的发生与以下哪项有关
近年来,××市一些零售药店为牟取私利,违反规定出售精神药品如舒乐安定等品种,且屡禁屡犯,使得一些群众不经医生处方,购得此类药品并乱服滥用,出现中毒现象。特别是一些中小学生购得药品后单体或群体超剂量服用,出现精神失常,严重者甚至危及生命,造成极坏社会影响。
以下对分娩期产妇进行灌肠的描述,正确的是
李某涉嫌盗窃,被公安局刑事拘留,后检察院批准将其逮捕。法院审理时发现,李某系受人教唆,且是从犯,故判处李某有期徒刑2年,缓期3年执行。后李某以自己年龄不满16周岁为由提起上诉,二审法院因此撤销原判,改判李某无罪并解除羁押。下列哪一选项是正确的?
一个学生考试成功了,他把原因归结为“考试题目太简单”。这种归因属于()因素。
运用以下信息求解下列问题。假设模型为单因素市场模型,关于股票A、B、C以及市场组合的信息如表2-6-8所示。写出每只股票相应的市场模型方程。
Ericwillgobackhomeassoonashe______(finish)histasks.
最新回复
(
0
)