首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)为区间[0,1]上的非负连续函数. 证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
设y=f(x)为区间[0,1]上的非负连续函数. 证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
admin
2016-09-30
94
问题
设y=f(x)为区间[0,1]上的非负连续函数.
证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
选项
答案
S
1
(c)=S
2
(c),S
2
(c)=∫
c
1
(t)df=一∫
1
t
f(t)dt,即证明S
1
(c)=S
2
(c),或cf(c)+∫
1
c
f(t)dt=0.令φ(x)=x∫
1
x
f(x)dt,φ(0)=φ(1)=0,根据罗尔定理,存在c∈(0,1),使得φ’(c)=0,即cf(c)+∫
1
c
f(t)dt=0,所以S
1
(c)=S
2
(c),命题得证.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/4fT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 B
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
求曲线x2+z2=10,y2+z2=10在点(1,1,3)处的切线和法平面方程.
计算高斯积分其中,r=(x,xo)i+(y-yo)j+(z-zo)k,r=|r|,n是封闭曲面∑的外法向量,点Mo(xo,yo,zo)是定点,点M(x,y,z)是动点,研究两种情况:(1)Mo在∑的外部;(2)Mo在∑的内部.
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
求下列曲线所围成的图形的公共部分的面积:(1)ρ=3及ρ=2(1+cosφ);(2)及ρ2=cos2φ.
已知级数,则:(1)写出级数的第五项和第九项u5,u9;(2)计算出部分和S3,S10;(3)写出前几项部分和Sn的表达式;(4)用级数收敛的定义验证该级数收敛,并求和.
下列反常积分是否收敛?如果收敛求出它的值:
(Ⅰ)设函数y=y(x)由方程sin(x2+y2)+ex-xy2=0所确定,求(Ⅱ)设函数y=y(x)由方程x3+y3-sin3x+6y=0所确定,求dy|x=0;(Ⅲ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
随机试题
心搏出量与心输出量有什么不同
G菌细胞壁的主要成分是
A.阳斑B.阴斑C.麻疹D.风疹E.隐疹皮下斑点隐隐稀少,色淡红,压之不褪,伴诸虚症状,此为
患者男,18岁。淋雨后高热、寒战,体温很快达到39.5℃,WBC20×109/L,X线胸片示大叶性肺炎。治疗此病的首选药物是
在团体中进行决策时,人们往往会比个人决策时更倾向于冒险或保守,向某一个极端偏斜,从而背离最佳决策,这是()。
人力资源开发的双重目标是()。
Ihaveworkedontheproblem,soIamfeelingtiredand______.
"Theeffectofthismedicine______bymidnight,"thedoctortoldEmma"Youhadbetternottrytoreadtonight."
Ineducation,Nigeriahasamothertonguepolicywhichrequiresthateverychildistaughtinamothertongueatthepreprimary【
A、Refinedfood.B、Processedfood.C、Naturalfood.D、Organicfood.CWhichtermisusedtodistinguishbetweenthetypesofthesa
最新回复
(
0
)