首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cos xdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cos xdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
admin
2019-01-05
104
问题
设函数f(x)在[0,π]上连续,且∫
0
π
f(x)dx=∫
0
π
f(x)cos xdx=0.试证明:在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,0≤x≤π,则有F(0)=0,F(π)=0,又因为 0=∫
0
π
f(x)cosxdx=∫
0
π
cosxdF(x) =F(x)cosx|
0
π
+∫
0
π
F(x)sinxdx =∫
0
π
F(x)sinxdx, 所以存在ξ∈(0,π),使F(ξ)sinξ=0,不然,则在(0,π)内F(x)sinx恒为正或恒为负,与∫
0
π
F(x)sinxdx=0矛盾,但当ξ∈(0,π)时sinξ≠0,故F(ξ)=0. 由以上证得,存在满足0<ξ<π的ξ,使得F(0)=F(ξ)=F(π)=0. 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔定理知,至少存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,π),使得F’(ξ
1
)=F’(ξ
2
)=0,即f(ξ
1
)=f(ξ
2
)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/aZW4777K
0
考研数学三
相关试题推荐
设A为m×n矩阵,且.证明方程组AX=b有且仅有n一r+1个线性无关解;
设un(x)满足的和函数.
设f(x)∈c[a,b],在(a,b)内二阶可导.若f(A)=f(B)=∫0bf(x)dx=0,证明:存在η∈(a,b),使得f’’(η)=f(η).
设f(x)在[0,1]上连续可导,f(1)=0,∫01xf’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3.证明:A不可相似对角化.
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3.证明:向量组α1,α2,α3线性无关.
设某工厂生产甲、乙两种产品,当这两种产品的产量分别为q1(吨)与q2(吨)时,总收入函数为R(q1,q2)=15q1+34q2—q12一4q22一2q1q2—36(万元),设生产1吨甲产品要支付排污费1万元,生产1吨乙产品要支付排污费2万元。当排污费总
随机试题
A.普通氯化消毒法B.氯胺法C.过量氯消毒法D.紫外线法E.渗透法以下各种情况宜选用上述何种消毒方法紧急用水,或有异物落入水中
下列施工合同中,属于无效合同的有()。
FIDIC施工合同条件(1999年第一版)约定:在以下()情况下宜对有关工作内容采用新的费率或价格。
浇筑大体积混凝土质量控制措施主要有()。
职业健康安全与环境管理的持续性是由()决定的。
城市消防远程监控系统中对用户信息传输装置调试中,要求模拟与监控中心间的报警传输网络故障以及使传输装置与备用电源之间的连线断路和短路传输装置应在()s内发出故障信号。
信用筹资成本的大小,与其信用期限的长短成同向变化,与其折扣期限成反向变化。()
坚持人民主体地位,着力践行以人民为中心的发展思想,其出发点和落脚点是
求
【B1】【B3】
最新回复
(
0
)