首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2000年试题,二)设函数f(x)满足关系式f’’(x)+[f’(x)]2=x,且f’(0)=0,则( ).
(2000年试题,二)设函数f(x)满足关系式f’’(x)+[f’(x)]2=x,且f’(0)=0,则( ).
admin
2013-12-18
66
问题
(2000年试题,二)设函数f(x)满足关系式f
’’
(x)+[f
’
(x)]
2
=x,且f
’
(0)=0,则( ).
选项
A、f(0)是f(x)的极大值
B、f(0)是f(x)的极小值
C、点(0,f(0))是曲线),y=(x)的拐点
D、f(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点
答案
C
解析
本题考查极值点及拐点的充分必要条件,由已知f
’
(0)=0及关系式f
’’
(x)+[f
’
(x)]
2
=x,则x=0是f(x)的驻点,但还不能确定是否为极值点,在已知关系式中令x=0,则f
2
(0)=0,至此也无法确定x=0点是否为拐点,还需对f
’’
(0)作进一步分析.将原关系式对戈求导,得f
’’
(x)=1一2f
’
(x)f
’’
(x),从而f
’’
(0)=1>0,且由f
’’
(x)的连续性(由其表达式所决定)知存在δ>0,使x∈(一δ,δ)时,f
’’
(x)>0,即在此小邻域内f
’’
(x)严格单调递增,从而f
’’
(x)在x=0左、右异号,即f
’’
(x)<0,x∈(一δ,0);f
’’
(x)>0,x∈(0,δ),由此可知x=0是f(x)的拐点,此外由前述,可知,当x∈(-δ,0)时,f
’’
(x)<0,则f
’
(c)严格单调递减,而当∈(0,δ)时f
’’
(x)>0,则f
’
(x)严格单调递增,已知f
’
(0)=0,从而当x∈(-δ,0)时f
’
(x)>0,且当x∈(0,δ)时f
’
(x)>0,因此x=0两侧f
’
(x)不变号,因此f(0)并非极值点,综上,选C.
[评注]f(x)在点x
o
处满足f
(k-1)
(x
o
)=0,f
(h)
(x
o
)≠0,则当k(k≥2)为偶数时,x
o
是函数的极值点,当k为奇数时点(x
o
,x
o
)是曲线y=f(x)的拐点.
转载请注明原文地址:https://www.kaotiyun.com/show/a934777K
0
考研数学二
相关试题推荐
下列函数中,在x=0处不可导的是()
设函数f(x)在(一∞,+∞)内连续,其导函数的图形如图所示,则__________.
(2004年)函数在下列哪个区间内有界:()
(2009年)(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)一f(A)=f’(ξ)(b一a).Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(
(02年)(1)验证函数y(χ)=1++…(-∞<χ<+∞)满足微分方程y〞+y′+y=eχ(2)利用(1)的结果求幂级数的和函数.
(2006年)设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是
设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记FZ(z)为随机变量Z=XY的分布函数,则函数FZ(z)的间断点个数为
(91年)曲线y=
随机试题
某企业计划期内要安排甲、乙两种产品生产,有关资源消耗及可获利润如题39表。该企业要获得利润最大化,应如何安排两种产品的生产?以原点为基础求出基础可行解,并建立初始单纯形表。
产品的价格不是通过市场供求决定,而是通过各企业间的妥协来决定的市场结构是()
关于髓母细胞瘤,下列要点哪项不对
可燃气体的点火能量与其爆炸极限范围的关系是()
关于薄壳曲面,下列说法不正确的是()。
下列哪些是以学生为中心的课程理论的基本主张?()
房屋:屋顶
MemorandumofUnderstandingfortheCollaborativeProgramonEmergingandRe-emergingInfectiousDiseasesbetweentheDepartment
RogerRosenblatt’sbookBlackFiction,inattemptingtoapplyliteraryratherthansociopoliticalcriteriatoitssubject,succe
A、Cantonesemooncakes.B、Old-fashionedlanterns.C、Chinesesouvenirs.D、Firecrackers.C根据选项所提到的物品,可以判断本题或许与某个节日的特色有关。录音提到这种街市是新加
最新回复
(
0
)