首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有n元实二次型 f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2, 其中ai(i=1,2,…,n)为实数。试问:当a1,a2,…,an满足条件时,二次型f(x1,x2,
设有n元实二次型 f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2, 其中ai(i=1,2,…,n)为实数。试问:当a1,a2,…,an满足条件时,二次型f(x1,x2,
admin
2021-01-25
114
问题
设有n元实二次型
f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n-1
+a
n-1
x
n
)
2
+(x
n
+a
n
x
1
)
2
,
其中a
i
(i=1,2,…,n)为实数。试问:当a
1
,a
2
,…,a
n
满足条件时,二次型f(x
1
,x
2
,…,x
n
)为正定二次型。
选项
答案
方法一:用正定性的定义判别。 已知对任意的x
1
,x
2
,…,x
n
均有f(x
1
,x
2
,…,x
n
)≥0,其中等号成立当且仅当 [*] 方程组仅有零解的充分必要条件是其系数行列式 |B|=[*]=1+(—1)
n+1
a
1
a
2
…a
n
≠0, 即当a
1
,a
2
,…,a
n
≠(一1)
n
时,方程组(*)只有零解,此时f(x
1
,x
2
,…,x
n
)=0。若对任意的非零向量x=(x
1
,x
2
,…,x
n
)≠0,(*)中总有一个方程不为零,则有 f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n-1
+a
n-1
x
n
)
2
+(x
n
+a
n
x
1
)
2
>0, 所以,根据正定二次型的定义,对任意的向量(x
1
,x
2
,…,x
n
),如果f(x
1
,x
2
,…,x
n
)≥0,则二次型正定。由以上证明题中f(x
1
,x
2
,…,x
n
)是正定二次型。 方法二:将二次型表示成矩阵形式,有 f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n-1
+a
n-1
x
n
)
2
+(x
n
+a
n
x
1
)
2
=(x
1
+x
1
x
2
,x
2
+a
2
x
3
,…,x
n-1
+a
n-1
x
n
,x
n
+a
n
x
1
)[*] [*] 则 f(x
1
,x
2
,…,x
n
)=X
T
B
T
Bx=(Bx)
T
Bx≥0, 当 |B|=[*]=1+(一1)
n+1
a
1
a
2
…a
n
≠0。 即当a
1
.a
2
.….a
n
≠(一1)
n
时,Bx=0只有零解,故当任意的X≠0时,均有f(x
1
,x
2
,…,x
n
)=(Bx)
T
Bx>0,从而由正定二次型的定义,对任意的向量(x
1
,x
2
,…,x
n
),如果f(x
1
,x
2
,…,x
n
)>0,则f(x
1
,x
2
,…,x
n
)是正定二次型。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ZAx4777K
0
考研数学三
相关试题推荐
设随机变量X与Y相互独立,且都服从区间(0,1)上的均匀分布,则下列服从相应区间或区域上均匀分布的是
设f(x)在点x0的某邻域内有定义,且f(x)在点x0处间断,则在点x0处必定间断的函数是()
an和bn符合下列哪一个条件可由bn发散?()
[2011年]设向量组α1=[1,0,1]T,α2=[0,1,1]T,α3=[1,3,5]T不能由向量组β1=[1,1,1]T,β2=[1,2,3]T,β3=[3,4,a]T线性表示.将β1,β2,β3用α1,α2,α3线性表示.
若DX=0.004,利用切比雪夫不等式估计概率P{|X—EX|<0.2}.
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,6)内可导,则存在ξ∈(a,b),使得f(b)—f(A)=f’(ξ)(b—a)。(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
设随机变量X在区间(0,1)上服从均匀分布,在X=x(0<x<1)的条件下,随机变量Y在区间(0,x)上服从均匀分布.求:Y的概率密度;
设f(x)具有二阶导数,且f"(x)>0.又设u(t)在区间[0,a](或[a,0])上连续,证明:
(2008年)设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有2阶导数且φ’≠一1。(I)求dz;(Ⅱ)记u(x,y)=
设f(x)在[a,b]上二阶可导,且f(x)>0,使不等式f(a)(b—a)
随机试题
在PowerPoint2003中,若需要输入文本,一般在________________中输入。
CT机的X线发生装置不包括
该病人治疗应选用:该病人因迁延失治,出现咳嗽气粗,喉中痰鸣,痰黄稠,咳吐不爽,胸闷,咳时引痛,口干欲饮,苔薄黄腻,质红,脉滑数,治疗应选用:
以下哪种措施不能降低血钾浓度
A.代谢性碱中毒及高血钾症B.代谢性碱中毒及低血钾症C.代谢性酸中毒及高血钾症D.呼吸性酸中毒合并代谢性酸中毒及高血钾症E.呼吸性酸中毒合并代谢性碱中毒及低血钾、低血氯症肺心病急性加重期(肺、心功能失代偿期),治疗前常出现
项目总进度纲要主要用于论证总进度目标实现的可能性,其内容包括()
深度为k的满二叉树有()个节点。
Tykoonisanonlinewebsitethatallowsyoutoteachyourchildfinancialprinciplesthroughallowances,assignmentoftasksand
Itwasverydifficulttobuildapowerstationinthedeepvalley,butit______aswehadhoped.
About40percentofAmericansthinkofthemselvesasshy,whileonly20percentsaytheyhaveneversufferedfromshynessatsom
最新回复
(
0
)