首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维非零向量口不是二阶方阵A的特征向量. (1)证明α,Aα线性无关; (2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化.
设二维非零向量口不是二阶方阵A的特征向量. (1)证明α,Aα线性无关; (2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化.
admin
2019-03-21
80
问题
设二维非零向量口不是二阶方阵A的特征向量.
(1)证明α,Aα线性无关;
(2)若A
2
α+Aα-6α=0,求A的特征值,讨论A可否对角化.
选项
答案
(1)若α,Aα线性相关,则存在不全为零的数k
1
,k
2
,使得k
1
α+k
2
Aα=0,可设k
2
≠0,所以Aα=-[*]α,矛盾,所以α,Aα线性无关. (2)由A
3
α+Aα-6α=0,得(A
2
+A-6E)α=0, 因为α≠0,所以r(A
2
+A-6E)<2,从而|A
2
+A-6E|=0,即 |3E+A|.|2E-A|=0,则|3E+A|=0或|2E-A|=0. 若|3E+A|≠0,则3E+A可逆,由(3E+A)(2E-A)α=0,得(2E-A)α=0,即Aα=2α,矛盾; 若|2E-A|≠0,则2E-A可逆,由(2E-A)(3E+A)α=0,得 (3E+A)α=0,即Aα=-3α,矛盾,所以有|3E+A|=0且|2E-A|=0,于是二阶矩阵A有两个特征值-3,2,故A可对角化.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Z1V4777K
0
考研数学二
相关试题推荐
曲线y=+arctan(1+x2)的斜渐近线方程为________.
已知非齐次线性方程组有3个线性无关的解.(1)证明方程组系数矩阵A的秩,r(A)=2:(2)求a,b的值及方程组的通解.
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
设向量组I:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0
证明n阶矩阵相似.
设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量.(Ⅱ)求矩阵A.
随机试题
极差是反映变量离散趋势的指标,下列说法错误的是
A.银翘散B.玉女煎C.泻心汤D.导赤散E.泻心导赤散风热乘脾型口疮的首选方是
选择性IgA缺陷下列哪项是错误的
建筑工程所使用的工程物资资料均应有出厂质量证明文件。()
甲公司2012年1月1日专门借款2000万元,年利率为5%,当日支付1600万元工程款。假设尚未动用的专门借款在尚未动用期间无收益。2013年1月1日,又借入一笔一般借款1000万元,年利率8%。同日,支付工程款800万元。项目在2013年3月31日完工。
下列有关创立大会的表述中,不正确的是()。
以下关于地方各级人民代表大会的说法中正确的是()。
马克思主义政党的组织原则是()
设有如下程序段:x=2Fori=1To10Step2x=x+iNext运行以上程序后,x的值是
A、She’senjoyingthemusic.B、Themusicwillkeepherawake.C、Themusicdoesn’tbotherher.D、Shewouldpreferadifferentstyl
最新回复
(
0
)